Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 18(7): e1009977, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35788729

RESUMO

African descent populations have a lower Alzheimer disease risk from ApoE ε4 compared to other populations. Ancestry analysis showed that the difference in risk between African and European populations lies in the ancestral genomic background surrounding the ApoE locus (local ancestry). Identifying the mechanism(s) of this protection could lead to greater insight into the etiology of Alzheimer disease and more personalized therapeutic intervention. Our objective is to follow up the local ancestry finding and identify the genetic variants that drive this risk difference and result in a lower risk for developing Alzheimer disease in African ancestry populations. We performed association analyses using a logistic regression model with the ApoE ε4 allele as an interaction term and adjusted for genome-wide ancestry, age, and sex. Discovery analysis included imputed SNP data of 1,850 Alzheimer disease and 4,331 cognitively intact African American individuals. We performed replication analyses on 63 whole genome sequenced Alzheimer disease and 648 cognitively intact Ibadan individuals. Additionally, we reproduced results using whole-genome sequencing of 273 Alzheimer disease and 275 cognitively intact admixed Puerto Rican individuals. A further comparison was done with SNP imputation from an additional 8,463 Alzheimer disease and 11,365 cognitively intact non-Hispanic White individuals. We identified a significant interaction between the ApoE ε4 allele and the SNP rs10423769_A allele, (ß = -0.54,SE = 0.12,p-value = 7.50x10-6) in the discovery data set, and replicated this finding in Ibadan (ß = -1.32,SE = 0.52,p-value = 1.15x10-2) and Puerto Rican (ß = -1.27,SE = 0.64,p-value = 4.91x10-2) individuals. The non-Hispanic Whites analyses showed an interaction trending in the "protective" direction but failing to pass a 0.05 significance threshold (ß = -1.51,SE = 0.84,p-value = 7.26x10-2). The presence of the rs10423769_A allele reduces the odds ratio for Alzheimer disease risk from 7.2 for ApoE ε4/ε4 carriers lacking the A allele to 2.1 for ApoE ε4/ε4 carriers with at least one A allele. This locus is located approximately 2 mB upstream of the ApoE locus, in a large cluster of pregnancy specific beta-1 glycoproteins on chromosome 19 and lies within a long noncoding RNA, ENSG00000282943. This study identified a new African-ancestry specific locus that reduces the risk effect of ApoE ε4 for developing Alzheimer disease. The mechanism of the interaction with ApoEε4 is not known but suggests a novel mechanism for reducing the risk for ε4 carriers opening the possibility for potential ancestry-specific therapeutic intervention.


Assuntos
Doença de Alzheimer , Alelos , Doença de Alzheimer/genética , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Genótipo , Humanos , Nigéria , Fatores de Risco
2.
Alzheimers Dement ; 20(2): 1250-1267, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37984853

RESUMO

BACKGROUND: Women demonstrate a memory advantage when cognitively healthy yet lose this advantage to men in Alzheimer's disease. However, the genetic underpinnings of this sex difference in memory performance remain unclear. METHODS: We conducted the largest sex-aware genetic study on late-life memory to date (Nmales  = 11,942; Nfemales  = 15,641). Leveraging harmonized memory composite scores from four cohorts of cognitive aging and AD, we performed sex-stratified and sex-interaction genome-wide association studies in 24,216 non-Hispanic White and 3367 non-Hispanic Black participants. RESULTS: We identified three sex-specific loci (rs67099044-CBLN2, rs719070-SCHIP1/IQCJ-SCHIP), including an X-chromosome locus (rs5935633-EGL6/TCEANC/OFD1), that associated with memory. Additionally, we identified heparan sulfate signaling as a sex-specific pathway and found sex-specific genetic correlations between memory and cardiovascular, immune, and education traits. DISCUSSION: This study showed memory is highly and comparably heritable across sexes, as well as highlighted novel sex-specific genes, pathways, and genetic correlations that related to late-life memory. HIGHLIGHTS: Demonstrated the heritable component of late-life memory is similar across sexes. Identified two genetic loci with a sex-interaction with baseline memory. Identified an X-chromosome locus associated with memory decline in females. Highlighted sex-specific candidate genes and pathways associated with memory. Revealed sex-specific shared genetic architecture between memory and complex traits.


Assuntos
Doença de Alzheimer , Envelhecimento Cognitivo , Humanos , Masculino , Feminino , Estudo de Associação Genômica Ampla , Doença de Alzheimer/genética , Cognição , Caracteres Sexuais
3.
Alzheimers Dement ; 20(2): 1268-1283, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37985223

RESUMO

INTRODUCTION: Although large-scale genome-wide association studies (GWAS) have been conducted on AD, few have been conducted on continuous measures of memory performance and memory decline. METHODS: We conducted a cross-ancestry GWAS on memory performance (in 27,633 participants) and memory decline (in 22,365 participants; 129,201 observations) by leveraging harmonized cognitive data from four aging cohorts. RESULTS: We found high heritability for two ancestry backgrounds. Further, we found a novel ancestry locus for memory decline on chromosome 4 (rs6848524) and three loci in the non-Hispanic Black ancestry group for memory performance on chromosomes 2 (rs111471504), 7 (rs4142249), and 15 (rs74381744). In our gene-level analysis, we found novel genes for memory decline on chromosomes 1 (SLC25A44), 11 (BSX), and 15 (DPP8). Memory performance and memory decline shared genetic architecture with AD-related traits, neuropsychiatric traits, and autoimmune traits. DISCUSSION: We discovered several novel loci, genes, and genetic correlations associated with late-life memory performance and decline. HIGHLIGHTS: Late-life memory has high heritability that is similar across ancestries. We discovered four novel variants associated with late-life memory. We identified four novel genes associated with late-life memory. Late-life memory shares genetic architecture with psychiatric/autoimmune traits.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/genética , Estudo de Associação Genômica Ampla , Endofenótipos , Predisposição Genética para Doença/genética , Cognição , Transtornos da Memória/genética , Polimorfismo de Nucleotídeo Único/genética
4.
Alzheimers Dement ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958117

RESUMO

INTRODUCTION: Despite a two-fold risk, individuals of African ancestry have been underrepresented in Alzheimer's disease (AD) genomics efforts. METHODS: Genome-wide association studies (GWAS) of 2,903 AD cases and 6,265 controls of African ancestry. Within-dataset results were meta-analyzed, followed by functional genomics analyses. RESULTS: A novel AD-risk locus was identified in MPDZ on chromosome (chr) 9p23 (rs141610415, MAF = 0.002, P = 3.68×10-9). Two additional novel common and nine rare loci were identified with suggestive associations (P < 9×10-7). Comparison of association and linkage disequilibrium (LD) patterns between datasets with higher and lower degrees of African ancestry showed differential association patterns at chr12q23.2 (ASCL1), suggesting that this association is modulated by regional origin of local African ancestry. DISCUSSION: These analyses identified novel AD-associated loci in individuals of African ancestry and suggest that degree of African ancestry modulates some associations. Increased sample sets covering as much African genetic diversity as possible will be critical to identify additional loci and deconvolute local genetic ancestry effects. HIGHLIGHTS: Genetic ancestry significantly impacts risk of Alzheimer's Disease (AD). Although individuals of African ancestry are twice as likely to develop AD, they are vastly underrepresented in AD genomics studies. The Alzheimer's Disease Genetics Consortium has previously identified 16 common and rare genetic loci associated with AD in African American individuals. The current analyses significantly expand this effort by increasing the sample size and extending ancestral diversity by including populations from continental Africa. Single variant meta-analysis identified a novel genome-wide significant AD-risk locus in individuals of African ancestry at the MPDZ gene, and 11 additional novel loci with suggestive genome-wide significance at P < 9×10-7. Comparison of African American datasets with samples of higher degree of African ancestry demonstrated differing patterns of association and linkage disequilibrium at one of these loci, suggesting that degree and/or geographic origin of African ancestry modulates the effect at this locus. These findings illustrate the importance of increasing number and ancestral diversity of African ancestry samples in AD genomics studies to fully disentangle the genetic architecture underlying AD, and yield more effective ancestry-informed genetic screening tools and therapeutic interventions.

5.
Alzheimers Dement ; 19(6): 2538-2548, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36539198

RESUMO

BACKGROUND: This study used admixture mapping to prioritize the genetic regions associated with Alzheimer's disease (AD) in African American (AA) individuals, followed by ancestry-aware regression analysis to fine-map the prioritized regions. METHODS: We analyzed 10,271 individuals from 17 different AA datasets. We performed admixture mapping and meta-analyzed the results. We then used regression analysis, adjusting for local ancestry main effects and interactions with genotype, to refine the regions identified from admixture mapping. Finally, we leveraged in silico annotation and differential gene expression data to prioritize AD-related variants and genes. RESULTS: Admixture mapping identified two genome-wide significant loci on chromosomes 17p13.2 (p = 2.2 × 10-5 ) and 18q21.33 (p = 1.2 × 10-5 ). Our fine mapping of the chromosome 17p13.2 and 18q21.33 regions revealed several interesting genes such as the MINK1, KIF1C, and BCL2. DISCUSSION: Our ancestry-aware regression approach showed that AA individuals have a lower risk of AD if they inherited African ancestry admixture block at the 17p13.2 locus. HIGHLIGHTS: We identified two genome-wide significant admixture mapping signals: on chromosomes 17p13.2 and 18q21.33, which are novel in African American (AA) populations. Our ancestry-aware regression approach showed that AA individuals have a lower risk of Alzheimer's disease (AD) if they inherited African ancestry admixture block at the 17p13.2 locus. We found that the overall proportion of African ancestry does not differ between the cases and controls that suggest African genetic ancestry alone is not likely to explain the AD prevalence difference between AA and non-Hispanic White populations.


Assuntos
Doença de Alzheimer , Predisposição Genética para Doença , Humanos , Predisposição Genética para Doença/genética , Negro ou Afro-Americano/genética , Doença de Alzheimer/genética , Mapeamento Cromossômico/métodos , Genótipo , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único/genética , Cinesinas/genética , Proteínas Serina-Treonina Quinases/genética
6.
Alzheimers Dement ; 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35770850

RESUMO

INTRODUCTION: Variants in the tau gene (MAPT) region are associated with breast cancer in women and Alzheimer's disease (AD) among persons lacking apolipoprotein E ε4 (ε4-). METHODS: To identify novel genes associated with tau-related pathology, we conducted two genome-wide association studies (GWAS) for AD, one among 10,340 ε4- women in the Alzheimer's Disease Genetics Consortium (ADGC) and another in 31 members (22 women) of a consanguineous Hutterite kindred. RESULTS: We identified novel associations of AD with MGMT variants in the ADGC (rs12775171, odds ratio [OR] = 1.4, P = 4.9 × 10-8 ) and Hutterite (rs12256016 and rs2803456, OR = 2.0, P = 1.9 × 10-14 ) datasets. Multi-omics analyses showed that the most significant and largest number of associations among the single nucleotide polymorphisms (SNPs), DNA-methylated CpGs, MGMT expression, and AD-related neuropathological traits were observed among women. Furthermore, promoter capture Hi-C analyses revealed long-range interactions of the MGMT promoter with MGMT SNPs and CpG sites. DISCUSSION: These findings suggest that epigenetically regulated MGMT expression is involved in AD pathogenesis, especially in women.

7.
Mol Psychiatry ; 25(8): 1859-1875, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-30108311

RESUMO

The Alzheimer's Disease Sequencing Project (ADSP) undertook whole exome sequencing in 5,740 late-onset Alzheimer disease (AD) cases and 5,096 cognitively normal controls primarily of European ancestry (EA), among whom 218 cases and 177 controls were Caribbean Hispanic (CH). An age-, sex- and APOE based risk score and family history were used to select cases most likely to harbor novel AD risk variants and controls least likely to develop AD by age 85 years. We tested ~1.5 million single nucleotide variants (SNVs) and 50,000 insertion-deletion polymorphisms (indels) for association to AD, using multiple models considering individual variants as well as gene-based tests aggregating rare, predicted functional, and loss of function variants. Sixteen single variants and 19 genes that met criteria for significant or suggestive associations after multiple-testing correction were evaluated for replication in four independent samples; three with whole exome sequencing (2,778 cases, 7,262 controls) and one with genome-wide genotyping imputed to the Haplotype Reference Consortium panel (9,343 cases, 11,527 controls). The top findings in the discovery sample were also followed-up in the ADSP whole-genome sequenced family-based dataset (197 members of 42 EA families and 501 members of 157 CH families). We identified novel and predicted functional genetic variants in genes previously associated with AD. We also detected associations in three novel genes: IGHG3 (p = 9.8 × 10-7), an immunoglobulin gene whose antibodies interact with ß-amyloid, a long non-coding RNA AC099552.4 (p = 1.2 × 10-7), and a zinc-finger protein ZNF655 (gene-based p = 5.0 × 10-6). The latter two suggest an important role for transcriptional regulation in AD pathogenesis.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/imunologia , Sequenciamento do Exoma , Regulação da Expressão Gênica/genética , Imunidade/genética , Transcrição Gênica/genética , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/imunologia , Apolipoproteínas E/genética , Feminino , Haplótipos/genética , Humanos , Imunoglobulina G , Fatores de Transcrição Kruppel-Like/genética , Masculino , Polimorfismo Genético/genética , RNA Longo não Codificante/genética
9.
PLoS Genet ; 14(12): e1007791, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30517106

RESUMO

The ApoE ε4 allele is the most significant genetic risk factor for late-onset Alzheimer disease. The risk conferred by ε4, however, differs across populations, with populations of African ancestry showing lower ε4 risk compared to those of European or Asian ancestry. The cause of this heterogeneity in risk effect is currently unknown; it may be due to environmental or cultural factors correlated with ancestry, or it may be due to genetic variation local to the ApoE region that differs among populations. Exploring these hypotheses may lead to novel, population-specific therapeutics and risk predictions. To test these hypotheses, we analyzed ApoE genotypes and genome-wide array data in individuals from African American and Puerto Rican populations. A total of 1,766 African American and 220 Puerto Rican individuals with late-onset Alzheimer disease, and 3,730 African American and 169 Puerto Rican cognitively healthy individuals (> 65 years) participated in the study. We first assessed average ancestry across the genome ("global" ancestry) and then tested it for interaction with ApoE genotypes. Next, we assessed the ancestral background of ApoE alleles ("local" ancestry) and tested if ancestry local to ApoE influenced Alzheimer disease risk while controlling for global ancestry. Measures of global ancestry showed no interaction with ApoE risk (Puerto Rican: p-value = 0.49; African American: p-value = 0.65). Conversely, ancestry local to the ApoE region showed an interaction with the ApoE ε4 allele in both populations (Puerto Rican: p-value = 0.019; African American: p-value = 0.005). ApoE ε4 alleles on an African background conferred a lower risk than those with a European ancestral background, regardless of population (Puerto Rican: OR = 1.26 on African background, OR = 4.49 on European; African American: OR = 2.34 on African background, OR = 3.05 on European background). Factors contributing to the lower risk effect in the ApoE gene ε4 allele are likely due to ancestry-specific genetic factors near ApoE rather than non-genetic ethnic, cultural, and environmental factors.


Assuntos
Doença de Alzheimer/genética , Apolipoproteína E4/genética , Negro ou Afro-Americano/genética , Hispânico ou Latino/genética , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Frequência do Gene , Variação Genética , Genética Populacional , Estudo de Associação Genômica Ampla , Humanos , Masculino , Porto Rico/etnologia , Fatores de Risco
10.
Genomics ; 111(4): 808-818, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-29857119

RESUMO

The Alzheimer's Disease Sequencing Project (ADSP) performed whole genome sequencing (WGS) of 584 subjects from 111 multiplex families at three sequencing centers. Genotype calling of single nucleotide variants (SNVs) and insertion-deletion variants (indels) was performed centrally using GATK-HaplotypeCaller and Atlas V2. The ADSP Quality Control (QC) Working Group applied QC protocols to project-level variant call format files (VCFs) from each pipeline, and developed and implemented a novel protocol, termed "consensus calling," to combine genotype calls from both pipelines into a single high-quality set. QC was applied to autosomal bi-allelic SNVs and indels, and included pipeline-recommended QC filters, variant-level QC, and sample-level QC. Low-quality variants or genotypes were excluded, and sample outliers were noted. Quality was assessed by examining Mendelian inconsistencies (MIs) among 67 parent-offspring pairs, and MIs were used to establish additional genotype-specific filters for GATK calls. After QC, 578 subjects remained. Pipeline-specific QC excluded ~12.0% of GATK and 14.5% of Atlas SNVs. Between pipelines, ~91% of SNV genotypes across all QCed variants were concordant; 4.23% and 4.56% of genotypes were exclusive to Atlas or GATK, respectively; the remaining ~0.01% of discordant genotypes were excluded. For indels, variant-level QC excluded ~36.8% of GATK and 35.3% of Atlas indels. Between pipelines, ~55.6% of indel genotypes were concordant; while 10.3% and 28.3% were exclusive to Atlas or GATK, respectively; and ~0.29% of discordant genotypes were. The final WGS consensus dataset contains 27,896,774 SNVs and 3,133,926 indels and is publicly available.


Assuntos
Doença de Alzheimer/genética , Estudo de Associação Genômica Ampla/normas , Técnicas de Genotipagem/normas , Controle de Qualidade , Sequenciamento Completo do Genoma/normas , Algoritmos , Feminino , Estudo de Associação Genômica Ampla/métodos , Genótipo , Técnicas de Genotipagem/métodos , Humanos , Masculino , Polimorfismo Genético , Sequenciamento Completo do Genoma/métodos
11.
Alzheimers Dement ; 13(7): 727-738, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28183528

RESUMO

INTRODUCTION: Genetic loci for Alzheimer's disease (AD) have been identified in whites of European ancestry, but the genetic architecture of AD among other populations is less understood. METHODS: We conducted a transethnic genome-wide association study (GWAS) for late-onset AD in Stage 1 sample including whites of European Ancestry, African-Americans, Japanese, and Israeli-Arabs assembled by the Alzheimer's Disease Genetics Consortium. Suggestive results from Stage 1 from novel loci were followed up using summarized results in the International Genomics Alzheimer's Project GWAS dataset. RESULTS: Genome-wide significant (GWS) associations in single-nucleotide polymorphism (SNP)-based tests (P < 5 × 10-8) were identified for SNPs in PFDN1/HBEGF, USP6NL/ECHDC3, and BZRAP1-AS1 and for the interaction of the (apolipoprotein E) APOE ε4 allele with NFIC SNP. We also obtained GWS evidence (P < 2.7 × 10-6) for gene-based association in the total sample with a novel locus, TPBG (P = 1.8 × 10-6). DISCUSSION: Our findings highlight the value of transethnic studies for identifying novel AD susceptibility loci.


Assuntos
Doença de Alzheimer/genética , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Proteínas Adaptadoras de Transdução de Sinal/genética , Apolipoproteína E4/genética , Proteínas Ativadoras de GTPase/genética , Predisposição Genética para Doença , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/genética , Humanos , Glicoproteínas de Membrana/genética , Chaperonas Moleculares/genética , Fatores de Transcrição NFI/genética , Enzima Bifuncional do Peroxissomo/genética , Receptores de GABA/genética
12.
Alzheimers Dement ; 12(1): 2-10, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26365416

RESUMO

INTRODUCTION: Few high penetrance variants that explain risk in late-onset Alzheimer's disease (LOAD) families have been found. METHODS: We performed genome-wide linkage and identity-by-descent (IBD) analyses on 41 non-Hispanic white families exhibiting likely dominant inheritance of LOAD, and having no mutations at known familial Alzheimer's disease (AD) loci, and a low burden of APOE ε4 alleles. RESULTS: Two-point parametric linkage analysis identified 14 significantly linked regions, including three novel linkage regions for LOAD (5q32, 11q12.2-11q14.1, and 14q13.3), one of which replicates a genome-wide association LOAD locus, the MS4A6A-MS4A4E gene cluster at 11q12.2. Five of the 14 regions (3q25.31, 4q34.1, 8q22.3, 11q12.2-14.1, and 19q13.41) are supported by strong multipoint results (logarithm of odds [LOD*] ≥1.5). Nonparametric multipoint analyses produced an additional significant locus at 14q32.2 (LOD* = 4.18). The 1-LOD confidence interval for this region contains one gene, C14orf177, and the microRNA Mir_320, whereas IBD analyses implicates an additional gene BCL11B, a regulator of brain-derived neurotrophic signaling, a pathway associated with pathogenesis of several neurodegenerative diseases. DISCUSSION: Examination of these regions after whole-genome sequencing may identify highly penetrant variants for familial LOAD.


Assuntos
Doença de Alzheimer/genética , Ligação Genética , Estudo de Associação Genômica Ampla , População Branca/genética , Idoso , Idoso de 80 Anos ou mais , Apolipoproteínas E/genética , Predisposição Genética para Doença , Humanos , Pessoa de Meia-Idade , Linhagem
13.
Alzheimers Dement ; 10(3): 360-5, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-23727082

RESUMO

BACKGROUND: The Arg406Trp (R406W) missense mutation in the microtubule-associated protein-tau gene (MAPT) is a known cause of early-onset dementia. Various dementia phenotypes have been described, including frontotemporal dementia (FTD), FTD with parkinsonism, and early-onset Alzheimer disease (EOAD)-like presentations. METHODS: Using whole-exome capture with subsequent sequencing, we identified the R406W mutation in a family with multiple individuals with clinically diagnosed EOAD, in a pattern suggesting autosomal dominant inheritance. We reevaluated all available family members clinically. RESULTS: Each of the affected individuals had a course meeting clinical criteria for EOAD. Two distinct disease trajectories were apparent: one rapidly progressive, and the other long and gradual. Four of five affected individuals also manifested parkinsonian symptoms. FTD features were not prominent and, when present, appeared only late in the course of dementia. CONCLUSIONS: The MAPT R406W mutation is associated with EOAD-like symptoms and parkinsonism without FTD, as well as distinct cognitive courses.


Assuntos
Demência/genética , Demência/fisiopatologia , Mutação de Sentido Incorreto , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/fisiopatologia , Proteínas tau/genética , Análise Mutacional de DNA/métodos , Progressão da Doença , Família , Humanos , Pessoa de Meia-Idade , Linhagem
14.
J Alzheimers Dis ; 98(3): 1053-1067, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38489177

RESUMO

Background: The X chromosome is often omitted in disease association studies despite containing thousands of genes that may provide insight into well-known sex differences in the risk of Alzheimer's disease (AD). Objective: To model the expression of X chromosome genes and evaluate their impact on AD risk in a sex-stratified manner. Methods: Using elastic net, we evaluated multiple modeling strategies in a set of 175 whole blood samples and 126 brain cortex samples, with whole genome sequencing and RNA-seq data. SNPs (MAF > 0.05) within the cis-regulatory window were used to train tissue-specific models of each gene. We apply the best models in both tissues to sex-stratified summary statistics from a meta-analysis of Alzheimer's Disease Genetics Consortium (ADGC) studies to identify AD-related genes on the X chromosome. Results: Across different model parameters, sample sex, and tissue types, we modeled the expression of 217 genes (95 genes in blood and 135 genes in brain cortex). The average model R2 was 0.12 (range from 0.03 to 0.34). We also compared sex-stratified and sex-combined models on the X chromosome. We further investigated genes that escaped X chromosome inactivation (XCI) to determine if their genetic regulation patterns were distinct. We found ten genes associated with AD at p < 0.05, with only ARMCX6 in female brain cortex (p = 0.008) nearing the significance threshold after adjusting for multiple testing (α = 0.002). Conclusions: We optimized the expression prediction of X chromosome genes, applied these models to sex-stratified AD GWAS summary statistics, and identified one putative AD risk gene, ARMCX6.


Assuntos
Doença de Alzheimer , Humanos , Masculino , Feminino , Doença de Alzheimer/genética , Transcriptoma , Predisposição Genética para Doença/genética , Cromossomo X , Encéfalo , Polimorfismo de Nucleotídeo Único/genética , Estudo de Associação Genômica Ampla
15.
Elife ; 122024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38787369

RESUMO

Rich data from large biobanks, coupled with increasingly accessible association statistics from genome-wide association studies (GWAS), provide great opportunities to dissect the complex relationships among human traits and diseases. We introduce BADGERS, a powerful method to perform polygenic score-based biobank-wide association scans. Compared to traditional approaches, BADGERS uses GWAS summary statistics as input and does not require multiple traits to be measured in the same cohort. We applied BADGERS to two independent datasets for late-onset Alzheimer's disease (AD; n=61,212). Among 1738 traits in the UK biobank, we identified 48 significant associations for AD. Family history, high cholesterol, and numerous traits related to intelligence and education showed strong and independent associations with AD. Furthermore, we identified 41 significant associations for a variety of AD endophenotypes. While family history and high cholesterol were strongly associated with AD subgroups and pathologies, only intelligence and education-related traits predicted pre-clinical cognitive phenotypes. These results provide novel insights into the distinct biological processes underlying various risk factors for AD.


Assuntos
Doença de Alzheimer , Bancos de Espécimes Biológicos , Endofenótipos , Estudo de Associação Genômica Ampla , Doença de Alzheimer/genética , Humanos , Fatores de Risco , Masculino , Feminino , Reino Unido/epidemiologia , Idoso , Predisposição Genética para Doença , Herança Multifatorial/genética , Idoso de 80 Anos ou mais
16.
Neurobiol Aging ; 133: 125-133, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37952397

RESUMO

There is a paucity of genetic studies of Alzheimer Disease (AD) in individuals of African Ancestry, despite evidence suggesting increased risk of AD in the African American (AA) population. We performed whole-genome sequencing (WGS) and multipoint linkage analyses in 51 multi-generational AA AD families ascertained through the Research in African American Alzheimer Disease Initiative (REAAADI) and the National Institute on Aging Late Onset Alzheimer's disease (NIA-LOAD) Family Based Study. Variants were prioritized on minor allele frequency (<0.01), functional potential of coding and noncoding variants, co-segregation with AD and presence in multi-ancestry ADSP release 3 WGS data. We identified a significant linkage signal on chromosome 5q35 (HLOD=3.3) driven by nine families. Haplotype segregation analysis in the family with highest LOD score identified a 3'UTR variant in INSYN2B with the most functional evidence. Four other linked AA families harbor within-family shared variants located in INSYN2B's promoter or enhancer regions. This AA family-based finding shows the importance of diversifying population-level genetic data to better understand the genetic determinants of AD on a global scale.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/epidemiologia , Escore Lod , Ligação Genética/genética , Haplótipos , Cromossomos , Predisposição Genética para Doença/genética
17.
Curr Protoc ; 3(11): e931, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37988228

RESUMO

Genome-wide association studies (GWAS) successfully identified numerous common variants involved in complex diseases, but only limited heritability was explained by these findings. Advances in high-throughput sequencing technology made it possible to assess the contribution of rare variants in common diseases. However, study of rare variants introduces challenges due to low frequency of rare variants. Well-established common variant methods were underpowered to identify the rare variants in GWAS. To address this challenge, several new methods have been developed to examine the role of rare variants in complex diseases. These approaches are based on testing the aggregate effect of multiple rare variants in a predefined genetic region. Provided here is an overview of statistical approaches and the protocols explaining step-by-step analysis of aggregations tests with the hands-on experience using R scripts in four categories: burden tests, adaptive burden tests, variance-component tests, and combined tests. Also explained are the concepts of rare variants, permutation tests, kernel methods, and genetic variant annotation. At the end we discuss relevant topics of bioinformatics tools for annotation, family-based design of rare-variant analysis, population stratification adjustment, and meta-analysis. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC.


Assuntos
Doença , Variação Genética , Estudo de Associação Genômica Ampla , Estudo de Associação Genômica Ampla/métodos , Doença/genética
18.
JAMA Neurol ; 80(9): 929-939, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37459083

RESUMO

Importance: Sex differences are established in associations between apolipoprotein E (APOE) ε4 and cognitive impairment in Alzheimer disease (AD). However, it is unclear whether sex-specific cognitive consequences of APOE are consistent across races and extend to the APOE ε2 allele. Objective: To investigate whether sex and race modify APOE ε4 and ε2 associations with cognition. Design, Setting, and Participants: This genetic association study included longitudinal cognitive data from 4 AD and cognitive aging cohorts. Participants were older than 60 years and self-identified as non-Hispanic White or non-Hispanic Black (hereafter, White and Black). Data were previously collected across multiple US locations from 1994 to 2018. Secondary analyses began December 2021 and ended September 2022. Main Outcomes and Measures: Harmonized composite scores for memory, executive function, and language were generated using psychometric approaches. Linear regression assessed interactions between APOE ε4 or APOE ε2 and sex on baseline cognitive scores, while linear mixed-effect models assessed interactions on cognitive trajectories. The intersectional effect of race was modeled using an APOE × sex × race interaction term, assessing whether APOE × sex interactions differed by race. Models were adjusted for age at baseline and corrected for multiple comparisons. Results: Of 32 427 participants who met inclusion criteria, there were 19 007 females (59%), 4453 Black individuals (14%), and 27 974 White individuals (86%); the mean (SD) age at baseline was 74 years (7.9). At baseline, 6048 individuals (19%) had AD, 4398 (14%) were APOE ε2 carriers, and 12 538 (38%) were APOE ε4 carriers. Participants missing APOE status were excluded (n = 9266). For APOE ε4, a robust sex interaction was observed on baseline memory (ß = -0.071, SE = 0.014; P = 9.6 × 10-7), whereby the APOE ε4 negative effect was stronger in females compared with males and did not significantly differ among races. Contrastingly, despite the large sample size, no APOE ε2 × sex interactions on cognition were observed among all participants. When testing for intersectional effects of sex, APOE ε2, and race, an interaction was revealed on baseline executive function among individuals who were cognitively unimpaired (ß = -0.165, SE = 0.066; P = .01), whereby the APOE ε2 protective effect was female-specific among White individuals but male-specific among Black individuals. Conclusions and Relevance: In this study, while race did not modify sex differences in APOE ε4, the APOE ε2 protective effect could vary by race and sex. Although female sex enhanced ε4-associated risk, there was no comparable sex difference in ε2, suggesting biological pathways underlying ε4-associated risk are distinct from ε2 and likely intersect with age-related changes in sex biology.


Assuntos
Doença de Alzheimer , Apolipoproteína E4 , Idoso , Feminino , Humanos , Masculino , Alelos , Doença de Alzheimer/genética , Apolipoproteína E2/genética , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Cognição , Função Executiva , Genótipo
19.
medRxiv ; 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37693582

RESUMO

INTRODUCTION: Despite a two-fold increased risk, individuals of African ancestry have been significantly underrepresented in Alzheimer's Disease (AD) genomics efforts. METHODS: GWAS of 2,903 AD cases and 6,265 cognitive controls of African ancestry. Within-dataset results were meta-analyzed, followed by gene-based and pathway analyses, and analysis of RNAseq and whole-genome sequencing data. RESULTS: A novel AD risk locus was identified in MPDZ on chromosome 9p23 (rs141610415, MAF=.002, P =3.68×10 -9 ). Two additional novel common and nine novel rare loci approached genome-wide significance at P <9×10 -7 . Comparison of association and LD patterns between datasets with higher and lower degrees of African ancestry showed differential association patterns at chr12q23.2 ( ASCL1 ), suggesting that the association is modulated by regional origin of local African ancestry. DISCUSSION: Increased sample sizes and sample sets from Africa covering as much African genetic diversity as possible will be critical to identify additional disease-associated loci and improve deconvolution of local genetic ancestry effects.

20.
Sci Rep ; 12(1): 6117, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35413975

RESUMO

Genetics play an important role in late-onset Alzheimer's Disease (AD) etiology and dozens of genetic variants have been implicated in AD risk through large-scale GWAS meta-analyses. However, the precise mechanistic effects of most of these variants have yet to be determined. Deeply phenotyped cohort data can reveal physiological changes associated with genetic risk for AD across an age spectrum that may provide clues to the biology of the disease. We utilized over 2000 high-quality quantitative measurements obtained from blood of 2831 cognitively normal adult clients of a consumer-based scientific wellness company, each with CLIA-certified whole-genome sequencing data. Measurements included: clinical laboratory blood tests, targeted chip-based proteomics, and metabolomics. We performed a phenome-wide association study utilizing this diverse blood marker data and 25 known AD genetic variants and an AD-specific polygenic risk score (PGRS), adjusting for sex, age, vendor (for clinical labs), and the first four genetic principal components; sex-SNP interactions were also assessed. We observed statistically significant SNP-analyte associations for five genetic variants after correction for multiple testing (for SNPs in or near NYAP1, ABCA7, INPP5D, and APOE), with effects detectable from early adulthood. The ABCA7 SNP and the APOE2 and APOE4 encoding alleles were associated with lipid variability, as seen in previous studies; in addition, six novel proteins were associated with the e2 allele. The most statistically significant finding was between the NYAP1 variant and PILRA and PILRB protein levels, supporting previous functional genomic studies in the identification of a putative causal variant within the PILRA gene. We did not observe associations between the PGRS and any analyte. Sex modified the effects of four genetic variants, with multiple interrelated immune-modulating effects associated with the PICALM variant. In post-hoc analysis, sex-stratified GWAS results from an independent AD case-control meta-analysis supported sex-specific disease effects of the PICALM variant, highlighting the importance of sex as a biological variable. Known AD genetic variation influenced lipid metabolism and immune response systems in a population of non-AD individuals, with associations observed from early adulthood onward. Further research is needed to determine whether and how these effects are implicated in early-stage biological pathways to AD. These analyses aim to complement ongoing work on the functional interpretation of AD-associated genetic variants.


Assuntos
Doença de Alzheimer , Transportadores de Cassetes de Ligação de ATP/genética , Adulto , Doença de Alzheimer/genética , Apolipoproteína E2/genética , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genômica , Humanos , Masculino , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA