Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Prostate ; 73(7): 724-33, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23138940

RESUMO

BACKGROUND: In the adult human prostate CD133 expression is thought to mark rare prostate epithelial stem cells and malignant tumor stem/initiating cells. Such putative stem cell populations are thought to proliferate slowly, but possess unlimited proliferative potential. Based on this, we hypothesized that CD133(pos) prostate cancer cells proliferate slower than CD133(neg) cells. METHODS: Human prostate cancer cell lines were analyzed for CD133 expression and DNA content using flow cytometry. Rates of cell division and DNA synthesis were determined using CFSE cell tracing and BrdU uptake, respectively. Changes in cell cycle distribution and the percentage of CD133(pos) cells were assayed under conditions of different cell density and AR-pathway modulation. Lastly, we over-expressed lentiviral CD133 to measure whether CD133 regulates the cell cycle. RESULTS: The cell cycle distribution differs between CD133(pos) and CD133(neg) cells in all three human prostate cancer cell lines studied. CD133(pos) cells have a greater proportion of cells in G2 and proliferate faster than CD133(neg) cells. High cell density increases the percentage of CD133(pos) cells without changing CD133(pos) cell cycle progression. Treatment with the AR agonist R1881, or the anti-androgen MDV3100, significantly changed the percentage and proliferation of CD133(pos) cells. Finally, ectopic over-expression of CD133 had no effect on cell cycle progression. CONCLUSIONS: Contrary to our hypothesis, we demonstrate that CD133(pos) cells proliferate faster than CD133(neg) cells. This association of CD133 expression with increased cell proliferation is not directly mediated by CD133, suggesting that surface CD133 is a downstream target gene of an undefined pathway controlling cell proliferation.


Assuntos
Antígenos CD/metabolismo , Glicoproteínas/metabolismo , Peptídeos/metabolismo , Próstata/patologia , Neoplasias da Próstata/patologia , Antígeno AC133 , Antagonistas de Androgênios/farmacologia , Ciclo Celular , Linhagem Celular Tumoral , Citometria de Fluxo , Humanos , Cinética , Masculino , Próstata/metabolismo , Neoplasias da Próstata/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
2.
Biomed J Sci Tech Res ; 28(4): 21788-21793, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32851205

RESUMO

SmartFlare™ RNA Detection Probes from Millipore is a novel technology to detect RNA in live cells based on the use of 12 nm gold nanoparticles coated with nucleotides. We proved that SmartFlares™ are internalized by human primary lymphocytes. However, fluorescence signals from target RNA detection can only be observed in the presence of Fetal Bovine Serum (FBS) in the medium, whereas it is not detectable without FBS or when medium is supplemented with human albumin. Image analysis of fluorescence generated from SmartFlare™ Uptake Control (gives constant signal regardless of contact with RNA) and RNA Specific Probes revealed further differences. In the presence of FBS, the fluorescence signal for both reagents was diffused within the cells, whereas in the absence of FBS, it was detected as single spots within the cells only when the Uptake Control was used. It is possible that FBS components are necessary for SmartFlare™ Probes to be released from cellular compartments into the cytoplasm where they can get into contact with target RNA. The exact mechanism of this phenomena should be further determined. However, for the first time, we present here that FBS in the cell culture medium is essential for RNA detection by SmartFlare™ technology in human lymphocytes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA