Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Cell Physiol ; 237(2): 1119-1142, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34636428

RESUMO

Islet amyloid polypeptide (IAPP or amylin) is a hormone co-secreted with insulin by pancreatic ß-cells and is the major component of islet amyloid. Islet amyloid is found in the pancreas of patients with type 2 diabetes (T2D) and may be involved in ß-cell dysfunction and death, observed in this disease. Thus, investigating the aspects related to amyloid formation is relevant to the development of strategies towards ß-cell protection. In this sense, IAPP misprocessing, IAPP overproduction, and disturbances in intra- and extracellular environments seem to be decisive for IAPP to form islet amyloid. Islet amyloid toxicity in ß-cells may be triggered in intra- and/or extracellular sites by membrane damage, endoplasmic reticulum stress, autophagy disruption, mitochondrial dysfunction, inflammation, and apoptosis. Importantly, different approaches have been suggested to prevent islet amyloid cytotoxicity, from inhibition of IAPP aggregation to attenuation of cell death mechanisms. Such approaches have improved ß-cell function and prevented the development of hyperglycemia in animals. Therefore, counteracting islet amyloid may be a promising therapy for T2D treatment.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Amiloide/metabolismo , Animais , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/genética , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/metabolismo
2.
J Cell Physiol ; 234(6): 9802-9809, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30370604

RESUMO

Human life expectancy is increasing faster lately and, consequently, the number of patients with age-related diseases such as type 2 diabetes (T2D) is rising every year. Cases of hyperinsulinemia have been extensively reported in elderly subjects and this alteration in blood insulin concentration is postulated to be a cause of insulin resistance, which in some cases triggers T2D onset. Thus, it is important to know the underlying mechanisms of age-dependent hyperinsulinemia to find new strategies to prevent T2D in elderly subjects. Two processes control blood insulin concentration: Insulin secretion by the endocrine portion of the pancreas and insulin clearance, which occurs mainly in the liver by the action of the insulin-degrading enzyme (IDE). Here, we demonstrated that 10-month-old mice (old) display increased body and fat pad weight, compared with 3-month-old mice (control), and these alterations were accompanied by glucose and insulin intolerance. We also confirm hyperinsulinemia in the old mice, which was related to increased insulin secretion but not to reduced insulin clearance. Although no changes in insulin clearance were observed, IDE activity was lower in the liver of old compared with the control mice. However, this decreased IDE activity was compensated by increased expression of IDE protein in the liver, thus explaining the similar insulin clearance observed in both groups. In conclusion, at the beginning of aging, 10-month-old mice do not display any alterations in insulin clearance. Therefore, hyperinsulinemia is initiated primarily due to a higher insulin secretion in the age-related metabolic dysfunction in mice.


Assuntos
Envelhecimento , Glucose/metabolismo , Hiperinsulinismo/etiologia , Insulina/metabolismo , Animais , Área Sob a Curva , Glicemia , Peso Corporal , Glucose/farmacologia , Homeostase , Hiperinsulinismo/metabolismo , Insulina/sangue , Insulisina , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
3.
FASEB J ; 29(5): 1805-16, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25609426

RESUMO

Type 1 diabetes (T1D) is provoked by an autoimmune assault against pancreatic ß cells. Exercise training enhances ß-cell mass in T1D. Here, we investigated how exercise signals ß cells in T1D condition. For this, we used several approaches. Wild-type and IL-6 knockout (KO) C57BL/6 mice were exercised. Afterward, islets from control and trained mice were exposed to inflammatory cytokines (IL-1ß plus IFN-γ). Islets from control mice and ß-cell lines (INS-1E and MIN6) were incubated with serum from control or trained mice or medium obtained from 5-aminoimidazole-4 carboxamide1-ß-d-ribofuranoside (AICAR)-treated C2C12 skeletal muscle cells. Subsequently, islets and ß cells were exposed to IL-1ß plus IFN-γ. Proteins were assessed by immunoblotting, apoptosis was determined by DNA-binding dye propidium iodide fluorescence, and NO(•) was estimated by nitrite. Exercise reduced 25, 75, and 50% of the IL-1ß plus IFN-γ-induced iNOS, nitrite, and cleaved caspase-3 content, respectively, in pancreatic islets. Serum from trained mice and medium from AICAR-treated C2C12 cells reduced ß-cell death, induced by IL-1ß plus IFN-γ treatment, in 15 and 38%, respectively. This effect was lost in samples treated with IL-6 inhibitor or with serum from exercised IL-6 KO mice. In conclusion, muscle contraction signals ß-cell survival in T1D through IL-6.


Assuntos
Apoptose , Diabetes Mellitus Tipo 1/patologia , Células Secretoras de Insulina/patologia , Interleucina-6/fisiologia , Ilhotas Pancreáticas/patologia , Músculo Esquelético/patologia , Condicionamento Físico Animal , Animais , Western Blotting , Proliferação de Células , Células Cultivadas , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/terapia , Glucose/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Interferon gama/farmacologia , Interleucina-1beta/farmacologia , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Óxido Nítrico/metabolismo , RNA Mensageiro/genética , Radioimunoensaio , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais
4.
Eur J Pharmacol ; 928: 175122, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35764131

RESUMO

Human islet amyloid polypeptide (hIAPP or amylin) is a hormone co-secreted with insulin by pancreatic ß-cells, and is the main component of islet amyloid. Islet amyloid is found in the pancreas of patients with type 2 diabetes and may be involved in ß-cell dysfunction and death, observed in this disease. Thus, counteracting islet amyloid toxicity represents a therapeutic approach to preserve ß-cell mass and function. In this sense, thiazolidinediones (TZDs), as rosiglitazone, have shown protective effects against other harmful insults to ß-cells. For this reason, we investigated whether rosiglitazone could protect ß-cells from hIAPP-induced cell death and the underlying mechanisms mediating such effect. Here, we show that rosiglitazone improved the viability of hIAPP-exposed INS-1E cells. This benefit is not dependent on the insulin-degrading enzyme (IDE) since rosiglitazone did not modulate IDE protein content and activity. However, rosiglitazone inhibited hIAPP fibrillation and decreased hIAPP-induced expression of C/EBP homologous protein (CHOP) (CTL 100.0 ± 8.4; hIAPP 182.7 ± 19.1; hIAPP + RGZ 102.8 ± 9.5), activating transcription factor-4 (ATF4) (CTL 100.0 ± 3.1; hIAPP 234.9 ± 19.3; hIAPP + RGZ 129.6 ± 3.0) and phospho-eukaryotic initiation factor 2-alpha (p-eIF2α) (CTL 100.0 ± 31.1; hIAPP 234.1 ± 36.2; hIAPP + RGZ 150.4 ± 18.0). These findings suggest that TZDs treatment may be a promising approach to preserve ß-cell mass and function by inhibiting islet amyloid formation and decreasing endoplasmic reticulum stress hIAPP-induced.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Rosiglitazona , Amiloide/metabolismo , Animais , Apoptose , Diabetes Mellitus Tipo 2/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Ratos , Rosiglitazona/farmacologia
5.
Front Endocrinol (Lausanne) ; 12: 679492, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054736

RESUMO

Hyperinsulinemia is frequently associated with aging and may cause insulin resistance in elderly. Since insulin secretion and clearance decline with age, hyperinsulinemia seems to be maintained, primarily, due to a decrease in the insulin clearance. To investigate these aging effects, 3- and 18-month-old male C57BL/6 mice were subjected to intraperitoneal glucose and insulin tolerance tests (ipGTT and ipITT) and, during the ipGTT, plasma c-peptide and insulin were measure to evaluate in vivo insulin clearance. Glucose-stimulated insulin secretion in isolated pancreatic islets was also assessed, and liver samples were collected for molecular analyses (western blot). Although insulin sensitivity was not altered in the old mice, glucose tolerance, paradoxically, seems to be increased, accompanied by higher plasma insulin, during ipGTT. While insulin secretion did not increase, insulin clearance was reduced in the old mice, as suggested by the lower c-peptide:insulin ratio, observed during ipGTT. Carcinoembryonic antigen-related cell adhesion molecule-1 (CEACAM1) and insulin-degrading enzyme (IDE), as well as the activity of this enzyme, were reduced in the liver of old mice, justifying the decreased insulin clearance observed in these mice. Therefore, loss of hepatic CEACAM1 and IDE function may be directly related to the decline in insulin clearance during aging.


Assuntos
Envelhecimento/metabolismo , Glucose/farmacologia , Secreção de Insulina/efeitos dos fármacos , Insulina/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Animais , Antígenos CD/metabolismo , Moléculas de Adesão Celular/metabolismo , Teste de Tolerância a Glucose , Insulina/sangue , Resistência à Insulina/fisiologia , Secreção de Insulina/fisiologia , Insulisina/metabolismo , Ilhotas Pancreáticas/metabolismo , Fígado/metabolismo , Masculino , Camundongos
6.
Mol Cell Endocrinol ; 521: 111116, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33321116

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder and the major cause of dementia. According to predictions of the World Health Organization, more than 150 million people worldwide will suffer from dementia by 2050. An increasing number of studies have associated AD with type 2 diabetes mellitus (T2DM), since most of the features found in T2DM are also observed in AD, such as insulin resistance and glucose intolerance. In this sense, some bile acids have emerged as new therapeutic targets to treat AD and metabolic disorders. The taurine conjugated bile acid, tauroursodeoxycholic (TUDCA), reduces amyloid oligomer accumulation and improves cognition in APP/PS1 mice model of AD, and also improves glucose-insulin homeostasis in obese and type 2 diabetic mice. Herein, we investigated the effect of TUDCA upon glucose metabolism in streptozotocin-induced AD mice model (Stz). The Stz mice that received 300 mg/kg TUDCA during 10 days (Stz + TUDCA), showed improvement in glucose tolerance and insulin sensitivity, reduced fasted and fed glycemia, increased islet mass and ß-cell area, as well as increased glucose-stimulated insulin secretion, compared with Stz mice that received only PBS. Stz + TUDCA mice also displayed lower neuroinflammation, reduced protein content of amyloid oligomer in the hippocampus, improved memory test and increased protein content of insulin receptor ß-subunit in the hippocampus. In conclusion, TUDCA treatment enhanced glucose homeostasis in the streptozotocin-induced Alzheimer's disease mice model, pointing this bile acid as a good strategy to counteract glucose homeostasis disturbance in AD pathology.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Ácidos e Sais Biliares/metabolismo , Glicemia/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Ácido Tauroquenodesoxicólico/farmacologia , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Glucose/metabolismo , Glucose/farmacologia , Hipocampo/metabolismo , Hipocampo/patologia , Inflamação/tratamento farmacológico , Insulina/sangue , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Masculino , Testes de Memória e Aprendizagem , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo Real , Estreptozocina/toxicidade , Ácido Tauroquenodesoxicólico/administração & dosagem
7.
Front Endocrinol (Lausanne) ; 11: 599165, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33324349

RESUMO

ARHGAP21 is a RhoGAP protein implicated in the modulation of insulin secretion and energy metabolism. ARHGAP21 transient-inhibition increase glucose-stimulated insulin secretion (GSIS) in neonatal islets; however, ARHGAP21 heterozygote mice have a reduced insulin secretion. These discrepancies are not totally understood, and it might be related to functional maturation of beta cells and peripheral sensitivity. Here, we investigated the real ARHGAP21 role in the insulin secretion process using an adult mouse model of acute ARHGAP21 inhibition, induced by antisense. After ARHGAP21 knockdown induction by antisense injection in 60-day old male mice, we investigated glucose and insulin tolerance test, glucose-induced insulin secretion, glucose-induced intracellular calcium dynamics, and gene expression. Our results showed that ARHGAP21 acts negatively in the GSIS of adult islet. This effect seems to be due to the modulation of important points of insulin secretion process, such as the energy metabolism (PGC1α), Ca2+ signalization (SYTVII), granule-extrusion (SNAP25), and cell-cell interaction (CX36). Therefore, based on these finds, ARHGAP21 may be an important target in Diabetes Mellitus (DM) treatment.


Assuntos
Proteínas Ativadoras de GTPase/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/farmacologia , Hiperinsulinismo/prevenção & controle , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Animais , Homeostase , Hiperinsulinismo/metabolismo , Hiperinsulinismo/patologia , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Edulcorantes/farmacologia
8.
Sci Rep ; 7: 46750, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28429777

RESUMO

Impairment of the insulin-degrading enzyme (IDE) is associated with obesity and type 2 diabetes mellitus (T2DM). Here, we used 4-mo-old male C57BL/6 interleukin-6 (IL-6) knockout mice (KO) to investigate the role of this cytokine on IDE expression and activity. IL-6 KO mice displayed lower insulin clearance in the liver and skeletal muscle, compared with wild type (WT), due to reduced IDE expression and activity. We also observed that after 3-h incubation, IL-6, 50 and 100 ng ml-1, increased the expression of IDE in HEPG2 and C2C12 cells, respectively. In addition, during acute exercise, the inhibition of IL-6 prevented an increase in insulin clearance and IDE expression and activity, mainly in the skeletal muscle. Finally, IL-6 and IDE concentrations were significantly increased in plasma from humans, after an acute exercise, compared to pre-exercise values. Although the increase in plasma IDE activity was only marginal, a positive correlation between IL-6 and IDE activity, and between IL-6 and IDE protein expression, was observed. Our outcomes indicate a novel function of IL-6 on the insulin metabolism expanding the possibilities for new potential therapeutic strategies, focused on insulin degradation, for the treatment and/or prevention of diseases related to hyperinsulinemia, such as obesity and T2DM.


Assuntos
Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Insulina/metabolismo , Insulisina/genética , Interleucina-6/farmacologia , Animais , Linhagem Celular , Células Hep G2 , Humanos , Insulisina/sangue , Insulisina/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Condicionamento Físico Animal
9.
J Endocrinol ; 229(3): 221-32, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27000684

RESUMO

The aim of this study was to investigate the insulin clearance in diet-induced obese (DIO) mice submitted to acute endurance exercise (3h of treadmill exercise at 60-70% VO2max). Glucose-stimulated insulin secretion in isolated islets; ipGTT; ipITT; ipPTT; in vivo insulin clearance; protein expression in liver, skeletal muscle, and adipose tissue (insulin degrading enzyme (IDE), insulin receptor subunitß(IRß), phospho-Akt (p-Akt) and phospho-AMPK (p-AMPK)), and the activity of IDE in the liver and skeletal muscle were accessed. In DIO mice, acute exercise reduced fasting glycemia and insulinemia, improved glucose and insulin tolerance, reduced hepatic glucose production, and increased p-Akt protein levels in liver and skeletal muscle and p-AMPK protein levels in skeletal muscle. In addition, insulin secretion was reduced, whereas insulin clearance and the expression of IDE and IRß were increased in liver and skeletal muscle. Finally, IDE activity was increased only in skeletal muscle. In conclusion, we propose that the increased insulin clearance and IDE expression and activity, primarily, in skeletal muscle, constitute an additional mechanism, whereby physical exercise reduces insulinemia in DIO mice.


Assuntos
Insulina/metabolismo , Obesidade/metabolismo , Obesidade/terapia , Condicionamento Físico Animal/fisiologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Peptídeo C/sangue , Dieta Hiperlipídica/efeitos adversos , Glucose/metabolismo , Insulina/sangue , Insulisina/metabolismo , Fígado/metabolismo , Masculino , Taxa de Depuração Metabólica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Músculo Esquelético/metabolismo , Obesidade/etiologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor de Insulina/metabolismo
10.
PLoS One ; 11(7): e0160239, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27467214

RESUMO

The effects of exercise on insulin clearance and IDE expression are not yet fully elucidated. Here, we have explored the effect of acute exercise on insulin clearance and IDE expression in lean mice. Male Swiss mice were subjected to a single bout of exercise on a speed/angle controlled treadmill for 3-h at approximately 60-70% of maximum oxygen consumption. As expected, acute exercise reduced glycemia and insulinemia, and increased insulin tolerance. The activity of AMPK-ACC, but not of IR-Akt, pathway was increased in the liver and skeletal muscle of trained mice. In an apparent contrast to the reduced insulinemia, glucose-stimulated insulin secretion was increased in isolated islets of these mice. However, insulin clearance was increased after acute exercise and was accompanied by increased expression of the insulin-degrading enzyme (IDE), in the liver and skeletal muscle. Finally, C2C12, but not HEPG2 cells, incubated at different concentrations of 5-aminoimidazole-4-carboxamide-1-ß-d-ribofuranoside (AICAR) for 3-h, showed increased expression of IDE. In conclusion, acute exercise increases insulin clearance, probably due to an augmentation of IDE expression in the liver and skeletal muscle. The elevated IDE expression, in the skeletal muscle, seems to be mediated by activation of AMPK-ACC pathway, in response to exercise. We believe that the increase in the IDE expression, comprise a safety measure to maintain glycemia at or close to physiological levels, turning physical exercise more effective and safe.


Assuntos
Insulina/metabolismo , Fígado/enzimologia , Músculo Esquelético/enzimologia , Condicionamento Físico Animal , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Linhagem Celular , Ativação Enzimática , Células Hep G2 , Humanos , Hidrólise , Insulisina , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Consumo de Oxigênio
11.
Steroids ; 114: 16-24, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27192429

RESUMO

Low levels of plasma estrogens are associated with weight-gain, android fat distribution, and a high prevalence of obesity-related comorbidities such as glucose intolerance and type II diabetes. The mechanisms underlying the association between low levels of estrogens and impaired glucose homeostasis are not completely understood. To begin to test this, we used three-month-old female C57BL/6J mice that either underwent ovariectomy (OVX) or received a sham surgery (Sham), and we characterized glucose homeostasis. In a subsequent series of experiments, OVX mice received estradiol treatment (OVX+E2) or vehicle (OVX) for 6 consecutive days. As has been previously reported, lack of ovarian hormones resulted in dysregulated glucose homeostasis. To begin to explore the mechanisms by which this occurs, we characterized the impact of estrogens on insulin secretion and degradation in these mice. Insulin secretion and plasma insulin levels were lower in OVX mice. OVX mice had lower levels of pancreatic Syntaxin 1-A (Synt-1A) protein, which is involved in insulin extrusion from the pancreas. In the liver, OVX mice had higher levels of insulin-degrading enzyme (IDE) and this was associated with higher insulin clearance. Estradiol treatment improved glucose intolerance in OVX mice and restored insulin secretion, as well as normalized the protein content of pancreatic Synt-1A. The addition of estrogens to OVX mice reduced IDE protein to that of Sham mice. Our data suggest loss of ovarian estradiol following OVX led to impaired glucose homeostasis due to pancreatic ß-cell dysfunction in the exocytosis of insulin, and upregulation of hepatic IDE protein content resulting in lower insulinemia, which was normalized by estradiol replacement.


Assuntos
Estradiol/uso terapêutico , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Animais , Estradiol/sangue , Exocitose/efeitos dos fármacos , Feminino , Intolerância à Glucose/sangue , Intolerância à Glucose/tratamento farmacológico , Intolerância à Glucose/metabolismo , Insulina/sangue , Resistência à Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Ovariectomia , Proteínas SNARE/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA