Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Immunity ; 52(5): 808-824.e7, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32433949

RESUMO

Tissue-resident memory CD8+ T cells (Trm) provide host protection through continuous surveillance of non-lymphoid tissues. Using single-cell RNA-sequencing (scRNA-seq) and genetic reporter mice, we identified discrete lineages of intestinal antigen-specific CD8+ T cells, including a Blimp1hiId3lo tissue-resident effector cell population most prominent in the early phase of acute viral and bacterial infections and a molecularly distinct Blimp1loId3hi tissue-resident memory population that subsequently accumulated at later infection time points. These Trm populations exhibited distinct cytokine production, secondary memory potential, and transcriptional programs including differential roles for transcriptional regulators Blimp1, T-bet, Id2, and Id3 in supporting and maintaining intestinal Trm. Extending our analysis to malignant tissue, we also identified discrete populations of effector-like and memory-like CD8+ T cell populations with tissue-resident gene-expression signatures that shared features of terminally exhausted and progenitor-exhausted T cells, respectively. Our findings provide insight into the development and functional heterogeneity of Trm cells, which has implications for enhancing vaccination and immunotherapy approaches.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Memória Imunológica/imunologia , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Neoplasias/terapia , Animais , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/virologia , Células Cultivadas , Imunoterapia/métodos , Proteína 2 Inibidora de Diferenciação/genética , Proteína 2 Inibidora de Diferenciação/imunologia , Proteína 2 Inibidora de Diferenciação/metabolismo , Proteínas Inibidoras de Diferenciação/genética , Proteínas Inibidoras de Diferenciação/imunologia , Proteínas Inibidoras de Diferenciação/metabolismo , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neoplasias/imunologia , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo/imunologia , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo
2.
Nat Immunol ; 16(6): 635-41, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25939026

RESUMO

The thymic production of regulatory T cells (Treg cells) requires interleukin 2 (IL-2) and agonist T cell antigen receptor (TCR) ligands and is controlled by competition for a limited developmental niche, but the thymic sources of IL-2 and the factors that limit access to the niche are poorly understood. Here we found that IL-2 produced by antigen-bearing dendritic cells (DCs) had a key role in Treg cell development and that existing Treg cells limited new development of Treg cells by competing for IL-2. Our data suggest that antigen-presenting cells (APCs) that can provide both IL-2 and a TCR ligand constitute the thymic niche and that competition by existing Treg cells for a limited supply of IL-2 provides negative feedback for new production of Treg cells.


Assuntos
Células Dendríticas/fisiologia , Interleucina-2/imunologia , Receptores de Antígenos de Linfócitos T/agonistas , Linfócitos T Reguladores/fisiologia , Timo/imunologia , Animais , Apresentação de Antígeno , Antígenos/imunologia , Diferenciação Celular , Linhagem Celular , Microambiente Celular , Retroalimentação Fisiológica , Interleucina-2/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
3.
J Immunol ; 211(2): 241-251, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37265401

RESUMO

The RNA-binding protein DEAD-box protein 5 (DDX5) is a polyfunctional regulator of gene expression, but its role in CD8+ T cell biology has not been extensively investigated. In this study, we demonstrate that deletion of DDX5 in murine CD8+ T cells reduced the differentiation of terminal effector, effector memory T, and terminal effector memory cells while increasing the generation of central memory T cells, whereas forced expression of DDX5 elicited the opposite phenotype. DDX5-deficient CD8+ T cells exhibited increased expression of genes that promote central memory T cell differentiation, including Tcf7 and Eomes. Taken together, these findings reveal a role for DDX5 in regulating the differentiation of effector and memory CD8+ T cell subsets in response to microbial infection.


Assuntos
Linfócitos T CD8-Positivos , Subpopulações de Linfócitos T , Animais , Camundongos , Diferenciação Celular , Memória Imunológica , Ativação Linfocitária , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo
4.
Immunity ; 41(2): 167-8, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-25148016

RESUMO

The intestinal epithelium harbors a large number of T cells, including TCRαß cells that lack expression of CD4 and CD8αß coreceptors. In this issue of Immunity, Mayans et al. (2014) and McDonald et al. (2014) shed light on the specificity and development of this enigmatic T cell population.


Assuntos
Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/imunologia , Linhagem da Célula/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Animais
5.
PLoS Comput Biol ; 18(9): e1010116, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36156073

RESUMO

Transcription factors (TFs) are crucial for regulating cell differentiation during the development of the immune system. However, the key TFs for orchestrating the specification of distinct immune cells are not fully understood. Here, we integrated the transcriptomic and epigenomic measurements in 73 mouse and 61 human primary cell types, respectively, that span the immune cell differentiation pathways. We constructed the cell-type-specific transcriptional regulatory network and assessed the global importance of TFs based on the Taiji framework, which is a method we have previously developed that can infer the global impact of TFs using integrated transcriptomic and epigenetic data. Integrative analysis across cell types revealed putative driver TFs in cell lineage-specific differentiation in both mouse and human systems. We have also identified TF combinations that play important roles in specific developmental stages. Furthermore, we validated the functions of predicted novel TFs in murine CD8+ T cell differentiation and showed the importance of Elf1 and Prdm9 in the effector versus memory T cell fate specification and Kdm2b and Tet3 in promoting differentiation of CD8+ tissue resident memory (Trm) cells, validating the approach. Thus, we have developed a bioinformatic approach that provides a global picture of the regulatory mechanisms that govern cellular differentiation in the immune system and aids the discovery of novel mechanisms in cell fate decisions.


Assuntos
Redes Reguladoras de Genes , Fatores de Transcrição , Animais , Diferenciação Celular/genética , Linhagem da Célula/genética , Biologia Computacional , Histona-Lisina N-Metiltransferase , Humanos , Camundongos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Immunol Rev ; 271(1): 114-26, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27088910

RESUMO

The ability of T cells to respond to a wide array of foreign antigens while avoiding reactivity to self is largely determined by cellular selection of developing T cells in the thymus. While a great deal is known about the cell types and molecules involved in T-cell selection in the thymus, our understanding of the spatial and temporal aspects of this process remain relatively poorly understood. Thymocytes are highly motile within the thymus and travel between specialized microenvironments at different phases of their development while interacting with distinct sets of self-peptides and peptide presenting cells. A knowledge of when, where, and how thymocytes encounter self-peptide MHC ligands at different stages of thymic development is key to understanding T-cell selection. In the past several years, our laboratory has investigated this topic using two-photon time-lapse microscopy to directly visualize thymocyte migration and signaling events, together with a living thymic slice preparation to provide a synchronized experimental model of T-cell selection in situ. Here, we discuss recent advances in our understanding of the temporal and spatial aspects of T-cell selection, highlighting our own work, and placing them in the context of work from other groups.


Assuntos
Diferenciação Celular , Seleção Clonal Mediada por Antígeno , Linfócitos T/fisiologia , Timócitos/fisiologia , Timo/fisiologia , Animais , Autoantígenos/imunologia , Movimento Celular/imunologia , Microambiente Celular , Humanos , Transdução de Sinais , Imagem com Lapso de Tempo
7.
Proc Natl Acad Sci U S A ; 107(29): 13034-9, 2010 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-20615958

RESUMO

Cell death is an important mechanism to limit uncontrolled T-cell expansion during immune responses. Given the role of death-receptor adapter protein Fas-associated death domain (FADD) in apoptosis, it is intriguing that T-cell receptor (TCR)-induced proliferation is blocked in FADD-defective T cells. Necroptosis is an alternate form of death that can be induced by death receptors and is linked to autophagy. It requires the death domain-containing kinase RIP1 and, in certain instances, RIP3. FADD and its apoptotic partner, Caspase-8, have also been implicated in necroptosis. To accurately assess the role of FADD in mature T-cell proliferation and death, we generated a conditional T-cell-specific FADD knockout mouse strain. The T cells of these mice develop normally, but lack FADD at the mature stage. FADD-deficient T cells respond poorly to TCR triggering, exhibit slow cell cycle entry, and fail to expand over time. We find that programmed necrosis occurs during the late stage of normal T-cell proliferation and that this process is greatly amplified in FADD-deficient T cells. Inhibition of necroptosis using an inhibitor of RIP1 kinase activity rescues the FADD knockout proliferative defect. However, TCR-induced necroptosis did not appear to require autophagy or involve RIP3. Consistent with their defective CD8 T-cell response, these mice succumb to Toxoplasma gondii infection more readily than wild-type mice. We conclude that FADD constitutes a mechanism to keep TCR-induced programmed necrotic signaling in check during early phases of T-cell clonal expansion.


Assuntos
Apoptose/imunologia , Proteína de Domínio de Morte Associada a Fas/metabolismo , Necrose/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Animais , Autofagia , Caspase 8/metabolismo , Ciclo Celular , Proliferação de Células , Suscetibilidade a Doenças , Proteína de Domínio de Morte Associada a Fas/deficiência , Camundongos , Fenótipo , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais , Análise de Sobrevida , Linfócitos T/citologia , Linfócitos T/enzimologia , Toxoplasma/imunologia , Toxoplasmose/imunologia , Toxoplasmose/parasitologia
8.
Front Immunol ; 14: 1250316, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022509

RESUMO

MHC-E restricted CD8 T cells show promise in vaccine settings, but their development and specificity remain poorly understood. Here we focus on a CD8 T cell population reactive to a self-peptide (FL9) bound to mouse MHC-E (Qa-1b) that is presented in response to loss of the MHC I processing enzyme ERAAP, termed QFL T cells. We find that mature QFL thymocytes are predominantly CD8αß+CD4-, show signs of agonist selection, and give rise to both CD8αα and CD8αß intraepithelial lymphocytes (IEL), as well as memory phenotype CD8αß T cells. QFL T cells require the MHC I subunit ß-2 microglobulin (ß2m), but do not require Qa1b or classical MHC I for positive selection. However, QFL thymocytes do require Qa1b for agonist selection and full functionality. Our data highlight the relaxed requirements for positive selection of an MHC-E restricted T cell population and suggest a CD8αß+CD4- pathway for development of CD8αα IELs.


Assuntos
Linfócitos T CD8-Positivos , Receptores de Antígenos de Linfócitos T alfa-beta , Animais , Camundongos , Peptídeos/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Timócitos/metabolismo , Genes MHC da Classe II
9.
J Exp Med ; 219(6)2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35593887

RESUMO

During an immune response to microbial infection, CD8+ T cells give rise to short-lived effector cells and memory cells that provide sustained protection. Although the transcriptional programs regulating CD8+ T cell differentiation have been extensively characterized, the role of long noncoding RNAs (lncRNAs) in this process remains poorly understood. Using a functional genetic knockdown screen, we identified the lncRNA Malat1 as a regulator of terminal effector cells and the terminal effector memory (t-TEM) circulating memory subset. Evaluation of chromatin-enriched lncRNAs revealed that Malat1 grouped with trans lncRNAs that exhibit increased RNA interactions at gene promoters and gene bodies. Moreover, we observed that Malat1 was associated with increased H3K27me3 deposition at a number of memory cell-associated genes through a direct interaction with Ezh2, thereby promoting terminal effector and t-TEM cell differentiation. Our findings suggest an important functional role of Malat1 in regulating CD8+ T cell differentiation and broaden the knowledge base of lncRNAs in CD8+ T cell biology.


Assuntos
RNA Longo não Codificante , Linfócitos T CD8-Positivos , Diferenciação Celular/genética , Repressão Epigenética , Ativação Linfocitária , RNA Longo não Codificante/genética
10.
Mucosal Immunol ; 14(1): 68-79, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32483197

RESUMO

Thymocytes bearing αß T cell receptors (TCRαß) with high affinity for self-peptide-MHC complexes undergo negative selection or are diverted to alternate T cell lineages, a process termed agonist selection. Among thymocytes bearing TCRs restricted to MHC class I, agonist selection can lead to the development of precursors that can home to the gut and give rise to CD8αα-expressing intraepithelial lymphocytes (CD8αα IELs). The factors that influence the choice between negative selection versus CD8αα IEL development remain largely unknown. Using a synchronized thymic tissue slice model that supports both negative selection and CD8αα IEL development, we show that the affinity threshold for CD8αα IEL development is higher than for negative selection. We also investigate the impact of peptide presenting cells and cytokines, and the migration patterns associated with these alternative cell fates. Our data highlight the roles of TCR affinity and the thymic microenvironments on T cell fate.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Seleção Clonal Mediada por Antígeno , Linfócitos Intraepiteliais/imunologia , Linfócitos Intraepiteliais/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Timo/imunologia , Timo/metabolismo , Linfócitos T CD8-Positivos/citologia , Microambiente Celular , Seleção Clonal Mediada por Antígeno/genética , Seleção Clonal Mediada por Antígeno/imunologia , Antígenos de Histocompatibilidade/química , Antígenos de Histocompatibilidade/genética , Antígenos de Histocompatibilidade/imunologia , Linfócitos Intraepiteliais/citologia , Peptídeos/imunologia , Timo/citologia
11.
J Immunother Cancer ; 9(10)2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34599020

RESUMO

BACKGROUND: T cell checkpoint immunotherapies have shown promising results in the clinic, but most patients remain non-responsive. CD47-signal regulatory protein alpha (SIRPα) myeloid checkpoint blockade has shown early clinical activity in hematologic malignancies. However, CD47 expression on peripheral blood limits αCD47 antibody selectivity and thus efficacy in solid tumors. METHODS: To improve the antibody selectivity and therapeutic window, we developed a novel affinity-tuned bispecific antibody targeting CD47 and programmed death-ligand 1 (PD-L1) to antagonize both innate and adaptive immune checkpoint pathways. This PD-L1-targeted CD47 bispecific antibody was designed with potent affinity for PD-L1 and moderate affinity for CD47 to achieve preferential binding on tumor and myeloid cells expressing PD-L1 in the tumor microenvironment (TME). RESULTS: The antibody design reduced binding on red blood cells and enhanced selectivity to the TME, improving the therapeutic window compared with αCD47 and its combination with αPD-L1 in syngeneic tumor models. Mechanistically, both myeloid and T cells were activated and contributed to antitumor activity of αCD47/PD-L1 bispecific antibody. Distinct from αCD47 and αPD-L1 monotherapies or combination therapies, single-cell RNA sequencing (scRNA-seq) and gene expression analysis revealed that the bispecific treatment resulted in unique innate activation, including pattern recognition receptor-mediated induction of type I interferon pathways and antigen presentation in dendritic cells and macrophage populations. Furthermore, treatment increased the Tcf7+ stem-like progenitor CD8 T cell population in the TME and promoted its differentiation to an effector-like state. Consistent with mouse data, the compounds were well tolerated and demonstrated robust myeloid and T cell activation in non-human primates (NHPs). Notably, RNA-seq analysis in NHPs provided evidence that the innate activation was mainly contributed by CD47-SIRPα but not PD-L1-PD-1 blockade from the bispecific antibody. CONCLUSION: These findings provide novel mechanistic insights into how myeloid and T cells can be uniquely modulated by the dual innate and adaptive checkpoint antibody and demonstrate its potential in clinical development (NCT04881045) to improve patient outcomes over current PD-(L)1 and CD47-targeted therapies.


Assuntos
Anticorpos Biespecíficos/uso terapêutico , Antígeno CD47/metabolismo , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias/tratamento farmacológico , Animais , Anticorpos Biespecíficos/farmacologia , Modelos Animais de Doenças , Feminino , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Imunidade Inata , Imunoterapia/métodos , Macaca fascicularis , Camundongos , Microambiente Tumoral
12.
Sci Immunol ; 5(47)2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32414833

RESUMO

During an immune response to microbial infection, CD8+ T cells give rise to distinct classes of cellular progeny that coordinately mediate clearance of the pathogen and provide long-lasting protection against reinfection, including a subset of noncirculating tissue-resident memory (TRM) cells that mediate potent protection within nonlymphoid tissues. Here, we used single-cell RNA sequencing to examine the gene expression patterns of individual CD8+ T cells in the spleen and small intestine intraepithelial lymphocyte (siIEL) compartment throughout the course of their differentiation in response to viral infection. These analyses revealed previously unknown transcriptional heterogeneity within the siIEL CD8+ T cell population at several stages of differentiation, representing functionally distinct TRM cell subsets and a subset of TRM cell precursors within the tissue early in infection. Together, these findings may inform strategies to optimize CD8+ T cell responses to protect against microbial infection and cancer.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Análise de Sequência de RNA , Análise de Célula Única , Animais , Linfócitos T CD8-Positivos/citologia , Diferenciação Celular/imunologia , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
13.
Sci Immunol ; 5(50)2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32826341

RESUMO

Inflammatory bowel disease (IBD) encompasses a spectrum of gastrointestinal disorders driven by dysregulated immune responses against gut microbiota. We integrated single-cell RNA and antigen receptor sequencing to elucidate key components, cellular states, and clonal relationships of the peripheral and gastrointestinal mucosal immune systems in health and ulcerative colitis (UC). UC was associated with an increase in IgG1+ plasma cells in colonic tissue, increased colonic regulatory T cells characterized by elevated expression of the transcription factor ZEB2, and an enrichment of a γδ T cell subset in the peripheral blood. Moreover, we observed heterogeneity in CD8+ tissue-resident memory T (TRM) cells in colonic tissue, with four transcriptionally distinct states of differentiation observed across health and disease. In the setting of UC, there was a marked shift of clonally related CD8+ TRM cells toward an inflammatory state, mediated, in part, by increased expression of the T-box transcription factor Eomesodermin. Together, these results provide a detailed atlas of transcriptional changes occurring in adaptive immune cells in the context of UC and suggest a role for CD8+ TRM cells in IBD.


Assuntos
Colite Ulcerativa/imunologia , Linfócitos Intraepiteliais/imunologia , Células T de Memória/imunologia , Linfócitos T Reguladores/imunologia , Imunidade Adaptativa , Animais , Colo/imunologia , Humanos , Imunoglobulina G/imunologia , Masculino , Camundongos Transgênicos , Análise de Célula Única
14.
Elife ; 82019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31868579

RESUMO

Autoreactive thymocytes are eliminated during negative selection in the thymus, a process important for establishing self-tolerance. Thymic phagocytes serve to remove dead thymocytes, but whether they play additional roles during negative selection remains unclear. Here, using a murine thymic slice model in which thymocytes undergo negative selection in situ, we demonstrate that phagocytosis promotes negative selection, and provide evidence for the escape of autoreactive CD8 T cells to the periphery when phagocytosis in the thymus is impaired. We also show that negative selection is more efficient when the phagocyte also presents the negative selecting peptide. Our findings support a model for negative selection in which the death process initiated following strong TCR signaling is facilitated by phagocytosis. Thus, the phagocytic capability of cells that present self-peptides is a key determinant of thymocyte fate.


Assuntos
Morte Celular , Ativação Linfocitária , Fagocitose/fisiologia , Timócitos/metabolismo , Animais , Apresentação de Antígeno , Células da Medula Óssea , Linfócitos T CD8-Positivos/imunologia , Proteínas de Ligação a DNA/genética , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Peptídeos/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Tolerância a Antígenos Próprios , Transdução de Sinais , Timo/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA