Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Biol Reprod ; 110(1): 154-168, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-37815939

RESUMO

Phoenixin is a neuropeptide with a well-established role in the central regulation of reproductive processes; however, knowledge regarding its role in the ovary is limited. One of the main active phoenixin isoforms is phoenixin-14, which acts through G protein-coupled receptor 173. Our research hypothesis was that phoenixin-14 is expressed in porcine corpus luteum and exerts luteotropic action by affecting the endocrine function of luteal cells through G protein-coupled receptor 173 and protein kinase signaling. Luteal cells were cultured to investigate the effect of phoenixin-14 (1-1000 nM) on endocrine function. We showed that phoenixin-14 and G protein-coupled receptor 173 are produced locally in porcine corpus luteum and their levels change during the estrous cycle. We detected phoenixin-14 immunostaining in the cytoplasm and G protein-coupled receptor 173 in the cell membrane. Plasma phoenixin levels were highest during the early luteal phase. Interestingly, insulin, luteinizing hormone, progesterone, and prostaglandins decreased phoenixin-14 levels in luteal cells. Phoenixin-14 increased progesterone, estradiol, and prostaglandin E2 secretion, but decreased prostaglandin F2α, upregulated the expression of steroidogenic enzymes, and downregulated receptors for luteinizing hormone and prostaglandin. Also, phoenixin-14 increased the expression of G protein-coupled receptor 173 and the phosphorylation of extracellular signal-regulated kinase 1/2, protein kinase B, inhibited the phosphorylation of protein kinase A, and had mixed effect on AMP-activated protein kinase alpha and protein kinase C. G protein-coupled receptor 173 and extracellular signal-regulated kinase 1/2 mediated the effect of phoenixin-14 on endocrine function of luteal cells. Our results suggest that phoenixin is produced by porcine luteal cells and can be a new regulator of their function.


Assuntos
Células Lúteas , Feminino , Animais , Suínos , Células Lúteas/metabolismo , Progesterona/farmacologia , Corpo Lúteo/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Hormônio Luteinizante/farmacologia , Hormônio Luteinizante/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
2.
Reproduction ; 167(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37971748

RESUMO

In brief: Adipolin (C1QTNF12) has been described as a regulator of metabolism and is linked with the pathophysiology of PCOS. In this study, for the first time, we show the expression of C1QTNF12 in granulosa cells and its positive effect on porcine granulosa cell proliferation and steroid synthesis. Abstract: Adipolin (C1QTNF12) is a recently discovered adipokine that plays an important role in glucose and insulin level regulation. Previous studies showed its reduced level in serum of women suffering from polycystic ovarian syndrome; however, whether C1QTNF12 regulates ovary function is still unknown. The aim of the study was first to determine the level of C1QTNF12 in the porcine ovarian follicles granulosa cells (Gc) and then its in vitro effect on proliferation and steroidogenesis as well as phosphorylation of several signalling pathways. Our results showed that the expression of C1QTNF12 was dependent on follicle size and was higher at the mRNA and protein level in Gc of small than large follicles from both prepubertal and mature animals. Similar pattern was observed for C1QTNF12 concentration in porcine follicular fluid. Additionally, we observed immunolocalisation of C1QTNF12 in Gc, theca cells and oocytes. We found that C1QTNF12 stimulated porcine Gc proliferation via the activation of protein kinase B (AKT). Moreover, C1QTNF12 enhanced progesterone, testosterone and oestradiol secretion by elevating STAR, CYP11A1, HSD3B and CYP19A1 mRNA expression and by activation of MAP3/1 pathway. Additionally, C1QTNF12 increased pMAP3/1-to-MAP3/1 protein expression ratio and enhanced IGF1-induced pTyr-IGF1Rß-to-IGFR1ß and pMAP3/1-to-MAP3/1 protein ratios. Taken together, C1QTNF12 could act directly on proliferation and steroid synthesis and serve as an important factor in in vivo ovarian follicle function, possibly regulating the course of folliculogenesis.


Assuntos
Adipocinas , Síndrome do Ovário Policístico , Feminino , Animais , Suínos , Humanos , Adipocinas/metabolismo , Células da Granulosa/metabolismo , Progesterona/metabolismo , Síndrome do Ovário Policístico/metabolismo , RNA Mensageiro/metabolismo , Reprodução , Estradiol/farmacologia
3.
Biol Reprod ; 109(5): 705-719, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37658762

RESUMO

Spexin (SPX) is a novel neuropeptide and adipokine negatively correlated with obesity and insulin resistance. A recent study investigated expression and regulatory function of SPX in the hypothalamus and pituitary; however, the effect on ovarian function is still unknown. The aim of this study was to characterize the expression of SPX and its receptors, galanin receptors 2 and 3 (GALR2/3), in the human ovary and to study its in vitro effect on granulosa cells (GC) function. Follicular fluid (FF) and GC were obtained from normal weight and obese healthy and diagnosed with polycystic ovarian syndrome (PCOS) women. Expression of SPX and GALR2/3 in the ovary was studied by qPCR, western blot, and immunohistochemistry. The level of SPX in FF was assessed by enzyme-linked immunosorbent assay. The in vitro effect of recombinant human SPX on GC proliferation, steroidogenesis, and signaling pathways (MAP3/1, STAT3, AKT, PKA) was analyzed. Moreover, GC proliferation and estradiol (E2) secretion were measured with and without an siRNA against GALR2/3 and pharmacological inhibition of the above kinases. The results showed that both the SPX concentration in FF and its gene expression were decreased in GC of obese and PCOS women, while the protein expression of GALR2/3 was increased. We noted that SPX reduced GC proliferation and steroidogenesis; these effects were mediated by GALR2/3 and kinases MAP3/1, AKT, and STAT3 for proliferation or kinases MAP3/1 and PKA for E2 secretion. The obtained data clearly documented that SPX is a novel regulator of human ovarian physiology and possibly plays a role in PCOS pathogenesis.


Assuntos
Síndrome do Ovário Policístico , Feminino , Humanos , Proliferação de Células , Células da Granulosa/metabolismo , Obesidade/metabolismo , Síndrome do Ovário Policístico/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
4.
Int J Mol Sci ; 23(19)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36232742

RESUMO

Kidneys play an especial role in copper redistribution in the organism. The epithelial cells of proximal tubules perform the functions of both copper uptake from the primary urine and release to the blood. These cells are equipped on their apical and basal membrane with copper transporters CTR1 and ATP7A. Mosaic mutant mice displaying a functional dysfunction of ATP7A are an established model of Menkes disease. These mice exhibit systemic copper deficiency despite renal copper overload, enhanced by copper therapy, which is indispensable for their life span extension. The aim of this study was to analyze the expression of Slc31a1 and Slc31a2 genes (encoding CTR1/CTR2 proteins) and the cellular localization of the CTR1 protein in suckling, young and adult mosaic mutants. Our results indicate that in the kidney of both intact and copper-injected 14-day-old mutants showing high renal copper content, CTR1 mRNA level is not up-regulated compared to wild-type mice given a copper injection. The expression of the Slc31a1 gene in 45-day-old mice is even reduced compared with intact wild-type animals. In suckling and young copper-injected mutants, the CTR1 protein is relocalized from the apical membrane to the cytoplasm of epithelial cells of proximal tubules, the process which prevents copper transport from the primary urine and, thus, protects cells against copper toxicity.


Assuntos
Transportador de Cobre 1 , Cobre , Células Epiteliais , Túbulos Renais Proximais , Síndrome dos Cabelos Torcidos , Animais , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Cobre/metabolismo , Cobre/toxicidade , Transportador de Cobre 1/genética , Transportador de Cobre 1/metabolismo , ATPases Transportadoras de Cobre/genética , ATPases Transportadoras de Cobre/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Expressão Gênica , Túbulos Renais Proximais/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Síndrome dos Cabelos Torcidos/etiologia , Síndrome dos Cabelos Torcidos/genética , Síndrome dos Cabelos Torcidos/metabolismo , Camundongos , Transporte Proteico/genética , Transporte Proteico/fisiologia , RNA Mensageiro/metabolismo , Proteínas SLC31/genética , Proteínas SLC31/metabolismo
5.
Histochem Cell Biol ; 155(1): 101-116, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33095902

RESUMO

Vitamin D3 (VD3) plays an important role in the ovary and its deficiency is associated with ovarian pathologies, including polycystic ovary syndrome (PCOS). However, there is no data related to VD3 metabolism in the ovary during PCOS. Herein, we investigated differences in the expression of VD3 receptor (VDR) and key VD3 metabolic enzymes, 1α-hydroxylase (CYP27B1) and 24-hydroxylase (CYP24A1), in the ovary and periovarian adipose tissue (POAT) of control (proestrus and diestrus) and PCOS induced by letrozole rats. Vdr, Cyp27b1 and Cyp24a1 mRNA expression was determined, their protein abundance was examined and immunolocalized. Furthermore, VD3 metabolite concentrations in plasma (25OHD) and tissues (ovary and POAT; 1,25(OH)2D3), and plasma calcium level were determined. 25OHD concentration decreased markedly in letrozole-treated rats in comparison with controls, whereas calcium concentration did not vary among the examined groups. The amount of 1,25(OH)2D3 decreased in both ovary and POAT of PCOS rats. In the ovary, we found decreased Cyp27b1 and increased Vdr mRNA expression in letrozole-treated and diestrus control group. Corresponding protein abundances were down-regulated and up-regulated, respectively but only following letrozole treatment. In POAT, only Cyp27b1 transcript level and CYP27B1 protein abundance were decreased in letrozole-treated rats. VDR was immunolocalized in healthy and cystic follicles, while CYP27B1 and CYP24A1 were found exclusively in healthy ones. Concluding, our results provide the first evidence of disrupted VD3 metabolism in the ovary and POAT of PCOS rats. The reduced 1,25(OH)2D3 concentration in those tissues suggests their contribution to VD3 deficiency observed in PCOS and might implicate in PCOS pathogenesis.


Assuntos
Tecido Adiposo/metabolismo , Colecalciferol/metabolismo , Ovário/metabolismo , Síndrome do Ovário Policístico/metabolismo , Tecido Adiposo/patologia , Administração Oral , Animais , Calcitriol/metabolismo , Feminino , Letrozol/administração & dosagem , Ovário/patologia , Síndrome do Ovário Policístico/induzido quimicamente , Síndrome do Ovário Policístico/patologia , Ratos , Ratos Wistar
6.
Reproduction ; 162(4): 237-248, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34314376

RESUMO

Resistin plays an important role in adipogenesis, obesity, insulin resistance, and reproduction. Previous studies showed resistin action on ovarian follicular cells; however, whether resistin regulates steroid secretion in luteal cells is still unknown. Our aim was first to determine the expression of resistin and its potential receptors (tyrosine kinase-like orphan receptor 1 (ROR1) and toll-like receptor 4 (TLR4)) in the porcine corpus luteum (CL), regulation of its expression, effect on kinases phosphorylation, and luteal steroidogenesis. Our results showed that the expression of resistin and its receptors was dependent on the luteal phase and this was higher at the mRNA level in the late compared with the early and middle luteal phase. At the opposite, resistin protein expression was higher in the middle and late compared with the early luteal phase, while ROR1 and TLR4 expression was highest in the early luteal phase. Additionally, we observed cytoplasmic localisation of resistin, ROR1, and TLR4 in small and large luteal cells. We found that luteinising hormone, progesterone (P4), insulin, and insulin-like growth factor 1 regulated the protein level of resistin, ROR1, and TLR4. Resistin decreased P4 and increased oestradiol (E2) secretion via changes in steroidogenic enzymes expression and via the activation of protein kinase A (PKA) and mitogen-activated protein kinase (MAP3/1), increased the expression of receptors LHCGR and ESR2 and decreased the expression of PGR. Moreover, resistin decreased PKA phosphorylation and enhanced MAP3/1 phosphorylation. Taken together, resistin could act directly on steroid synthesis and serve as an important factor in in vivo luteal cell function.


Assuntos
Corpo Lúteo , Estradiol , Progesterona , Resistina , Suínos , Animais , Corpo Lúteo/metabolismo , Estradiol/metabolismo , Feminino , Células Lúteas/metabolismo , Hormônio Luteinizante/metabolismo , Progesterona/metabolismo , Resistina/metabolismo
7.
Int J Mol Sci ; 22(5)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803239

RESUMO

Previously, we demonstrated the expression of apelin and G-protein-coupled receptor APJ in human placenta cell lines as well as its direct action on placenta cell proliferation and endocrinology. The objective of this study was to examine the effect of apelin on placenta apoptosis in BeWo cells and villous explants from the human third trimester of pregnancy. The BeWo cells and villous explants were incubated with apelin (2 and 20 ng/mL) alone or with staurosporine for 24 to 72 h. First, we analysed the dose- and time-dependent effect of apelin on the expression of apoptotic factors on the mRNA level by real-time PCR and on the protein level using Western blot. Next, we checked caspase 3 and 7 activity by Caspase-Glo 3/7, DNA fragmentation by the Cell Death Detection ELISA kit and oxygen consumption by the MitoXpress-Xtra Oxygen Consumption assay. We found that apelin increased the expression of pro-survival and decreased proapoptotic factors on mRNA and protein levels in both BeWo cells and villous explants. Additionally, apelin inhibited caspase 3 and 7 activity and DNA fragmentation in staurosporine-induced apoptosis as also attenuated oxidative stress by increasing extracellular oxygen consumption. The antiapoptotic effect of apelin in BeWo cells was mediated by the APJ receptor and mitogen-activated protein kinase (ERK1/2/MAP3/1) and protein kinase B (AKT). The obtained results showed the antiapoptotic effect of apelin on trophoblast cells, suggesting its participation in the development of the placenta.


Assuntos
Apelina/farmacologia , Apoptose/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Placenta/metabolismo , Terceiro Trimestre da Gravidez , Caspase 3/metabolismo , Caspase 7/metabolismo , Linhagem Celular Tumoral , MAP Quinases Reguladas por Sinal Extracelular , Feminino , Humanos , Gravidez , Proteínas da Gravidez/metabolismo
8.
Biol Reprod ; 102(6): 1290-1305, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32149334

RESUMO

Vaspin, visceral-adipose-tissue-derived serine protease inhibitor, is involved in the development of obesity, insulin resistance, inflammation, and energy metabolism. Our previous study showed vaspin expression and its regulation in the ovary; however, the role of this adipokine in ovarian cells has never been studied. Here, we studied the in vitro effect of vaspin on various kinase-signaling pathways: mitogen-activated kinase (MAP3/1), serine/threonine kinase (AKT), signal transducer and activator of transcription 3 (STAT3) protein kinase AMP (PRKAA1), protein kinase A (PKA), and on expression of nuclear factor kappa B (NFKB2) as well as on steroid synthesis by porcine ovarian cells. By using western blot, we found that vaspin (1 ng/ml), in a time-dependent manner, increased phosphorylation of MAP3/1, AKT, STAT3, PRKAA1, and PKA, while it decreased the expression of NFKB2. We observed that vaspin, in a dose-dependent manner, increased the basal steroid hormone secretion (progesterone and estradiol), mRNA and protein expression of steroid enzymes using real-time PCR and western blot, respectively, and the mRNA of gonadotropins (FSHR, LHCGR) and steroids (PGR, ESR2) receptors. The stimulatory effect of vaspin on basal steroidogenesis was reversed when ovarian cells were cultured in the presence of a PKA pharmacological inhibitor (KT5720) and when GRP78 receptor was knocked down (siRNA). However, in the presence of insulin-like growth factor type 1 and gonadotropins, vaspin reduced steroidogenesis. Thus, vaspin, by activation of various signaling pathways and stimulation of basal steroid production via GRP78 receptor and PKA, could be a new regulator of porcine ovarian function.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ovário/fisiologia , Serpinas/farmacologia , Transdução de Sinais/fisiologia , Suínos/fisiologia , Animais , Células Cultivadas , Técnicas de Cocultura , Relação Dose-Resposta a Droga , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Proteínas de Choque Térmico , Subunidade p52 de NF-kappa B/genética , Subunidade p52 de NF-kappa B/metabolismo , Ovário/citologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores da Gonadotropina/genética , Receptores da Gonadotropina/metabolismo , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Serpinas/administração & dosagem
9.
Gen Comp Endocrinol ; 299: 113584, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32827511

RESUMO

In pig, backfat deposition is strongly related to the growth and reproductive performance. However, the molecular regulatory mechanisms of adipose tissue are not clearly understood. Adipose tissue is now recognized as an important endocrine organ that secretes a variety of factors including adipokines. However, the regulation of expression pattern of these adipokines in both plasma and visceral white adipose tissue (WAT) in lean and fat pig is unclear. In the present study, we used two representative porcine breeds (Large White, LW; Meishan, MS) with contrasting backfat thickness and sexual maturity age. Using specific ELISA assays, we determined the plasma profile of eight adipokines, leptin, adiponectin, visfatin, apelin, chemerin, resistin, omentin and vaspin in LW and MS sows. By RT-qPCR and western-blot we also investigated the mRNA and protein levels of these adipokines and their cognate receptors (LEPR, ADIPOR1, ADIPOR2, CMKLR1, CCRL2, GPR1, APLNR, TLR4, ROR1, CAP1 and HSPA5) in the peri renal WAT, respectively. At both plasma and peri renal WAT level, we found that the amounts of leptin, chemerin, resistin and vaspin were higher whereas those of adiponectin and omentin were lower in MS than LW sows. Plasma and adipose tissue visfatin and apelin levels were not different between the two breeds. Moreover, we noted that the variations of peri renal WAT adipokines observed between MS and LW were similar at the protein and mRNA level except for chemerin and apelin suggesting post-transcriptional modifications for these two adipokines. Finally, among the eight adipokines studied, we showed that only the plasma concentrations of leptin and chemerin were positively and those of adiponectin, negatively associated with the thickness of fat and opposite correlation was found for the onset of puberty in both LW and MS animals. Taken together, these results support a potential involvement of adipokines in WAT regulation and its link with the onset of the puberty in sows.


Assuntos
Adipocinas/metabolismo , Tecido Adiposo/metabolismo , Puberdade/metabolismo , Animais , Chaperona BiP do Retículo Endoplasmático , Feminino , Humanos , Suínos
10.
Int J Mol Sci ; 21(18)2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32957618

RESUMO

Formation and limited lifespan of corpus luteum (CL) are important for proper ovarian periodicity and fertility. Failed vascularization, imbalance between proliferation and apoptosis leads to luteal phase deficiency and infertility. The aim of this study was to examine the effect of vaspin on angiogenesis, apoptosis and proliferation as well as the involvement of 78-kDa glucose-regulated protein receptor (GRP78) and mitogen-activated kinase (MAP3/1) in these processes. Porcine luteal cells were incubated with vaspin (0.1-10 ng/mL) for 24 h to 72 h and then mRNA and protein expression of angiogenesis: vascular endothelial growth factor (VEGFA), fibroblast growth factor 2 (FGF2), angiopoietin 1 (ANGPT1), VEGFA receptors (VEGFR1, VEGFR2), apoptosis: caspase 3, bcl-2-like protein 4 (BAX), B-cell lymphoma (BCL2), and proliferation: proliferating cells nuclear antigen (PCNA), cyclin A factors as well as secretion of VEGFA, FGF2, ANGT1 were measured by real-time polymerase chain reaction (PCR), immunoblotting and enzyme-linked immunosorbent assay (ELISA), respectively. Moreover, apoptosis was assessed by caspase activity using the Caspase-Glo 3/7 assay, while proliferation was by alamarBlue. We found that vaspin enhanced luteal cell angiogenesis, proliferation, and significantly decreased apoptosis. Additionally, using GRP78 siRNA and the pharmacological inhibitor of MAP3/1 (PD98059), we observed that the effect of vaspin was reversed to the control level in all investigated processes. Taken together, our results suggest that vaspin is a new regulator of female fertility by direct regulation of CL formation and maintenance of luteal cell function.


Assuntos
Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Corpo Lúteo/efeitos dos fármacos , Proteínas de Choque Térmico/metabolismo , Células Lúteas/efeitos dos fármacos , MAP Quinase Quinase Quinase 1/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Serpinas/farmacologia , Angiopoietina-1/metabolismo , Animais , Apoptose/genética , Proliferação de Células/genética , Corpo Lúteo/citologia , Corpo Lúteo/metabolismo , Chaperona BiP do Retículo Endoplasmático , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Proteínas de Choque Térmico/genética , Células Lúteas/metabolismo , MAP Quinase Quinase Quinase 1/genética , Neovascularização Fisiológica/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Suínos , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
11.
Int J Mol Sci ; 21(24)2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33302416

RESUMO

Oocyte maturation is a critical stage in embryo production and female reproduction. The aims of this study were to determine: (i) the mRNA and protein expression of vaspin and its receptor 78-kDa glucose-regulated (GRP78) in porcine cumulus-oocyte complexes (COCs) by real-time PCR and Western blot analysis, respectively, and their localisation by immunofluorescence; and (ii) the effects of vaspin on in vitro oocyte maturation (IVM) and the involvement of mitogen ERK1/2 (MAP3/1)- and AMPKα (PRKAA1)-activated kinases in the studied processes. Porcine COCs were matured in vitro for 22 h or 44 h with vaspin at a dose of 1 ng/mL and nuclear maturation assessed by Hoechst 33342 or DAPI staining and the measurement of progesterone (P4) level in the maturation medium. We showed that vaspin and GRP78 protein expression increased in oocytes and cumulus cells after IVM. Moreover, vaspin enhanced significantly porcine oocyte IVM and P4 concentration, as well as MAP3/1 phosphorylation, while decreasing PRKAA1. Using pharmacological inhibitors of MAP3/1 (PD98059) and PRKAA1 (Compound C), we observed that the effect of vaspin was reversed to the control level by all studied parameters. In conclusion, vaspin, by improving in vitro oocyte maturation via MAP3/1 and PRKAA1 kinase pathways, can be a new factor to improve in vitro fertilisation protocols.


Assuntos
Sistema de Sinalização das MAP Quinases , Oócitos/metabolismo , Oogênese , Serpinas/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Células Cultivadas , Feminino , Proteínas de Choque Térmico/metabolismo , Técnicas de Maturação in Vitro de Oócitos , MAP Quinase Quinase Quinases/metabolismo , Oócitos/citologia , Serpinas/genética , Suínos
12.
Reproduction ; 158(2): 135-146, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31063973

RESUMO

Vaspin, also known as visceral adipose tissue-derived serine protease inhibitor, is a member of the serine protease inhibitor family. Its expression is associated with obesity, insulin resistance and type 2 diabetes, and elevated concentration is observed in polycystic ovary syndrome. However, vaspin has never been studied in the ovary. Here, we identified vaspin in two prolific breeds of pigs: fat Meishan (MS) and lean Large White (LW). We then investigated the molecular mechanism involved in the regulation of its expression in response to gonadotropins, insulin, insulin-like growth factor type 1 (IGF-1) and steroids (progesterone, testosterone and oestradiol) in ovarian follicles cells. Using real-time PCR and Western blot, we found higher vaspin mRNA and protein expression in the ovarian follicles and adipose tissue at 10-12 days of the oestrous cycle in MS compared to LW. Moreover, vaspin expression, as well as its concentration in plasma and follicular fluid, decreased in ovarian follicles of LW during days of the oestrous cycle, while the opposite results were noted in MS. Immunohistochemistry showed vaspin in granulosa, theca, cumulus cells and oocytes as well as in adipocytes. Vaspin level in the ovary increased by gonadotropin, insulin, IGF-1 and steroids stimulation through kinases JAK/Stat, ERK1/2, PI3K and AMPK, as well as factor NF-κB. These findings all show vaspin expression and regulation in the pig ovary, indicating vaspin as a new regulator in female reproduction. Future studies will be necessary for understanding the role of vaspin on ovarian physiology providing new insights into the pathology of ovaries.


Assuntos
Tecido Adiposo Branco/metabolismo , Ciclo Estral , Folículo Ovariano/metabolismo , Serpinas/metabolismo , Animais , Feminino , Hormônios/fisiologia , Humanos , Fosfotransferases/metabolismo , Especificidade da Espécie , Suínos
13.
Int J Mol Sci ; 20(22)2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31752432

RESUMO

Vaspin, a visceral adipose tissue-derived serine protease inhibitor, is expressed in the porcine ovary; it induces the activation of various kinases and steroidogenesis. The aim of this study was to examine the effect of vaspin on granulosa (Gc) proliferation, cell cycle regulation, and apoptosis. Porcine Gc was incubated with vaspin (0.01-10 ng/mL) for 24 to 72 h, proliferation was measured using alamarBlue assay, cell cycle progression was assessed using flow cytometry, and cyclin (D, E, and A) protein expression was measured using immunoblotting. Apoptosis was assessed by measuring caspase activity using Caspase-glo 3/7 assay. Furthermore, histone-associated DNA fragments levels were measured using a cell-death detection ELISA; BAX (bcl-2-like protein 4), BCL2 (B-cell lymphoma 2), caspases (-3, -8, and -9), p53 mRNA, and protein expression were assessed using real time PCR and immunoblotting. We found that vaspin significantly enhanced Gc proliferation and cell cycle progression into the S and G2/M phases and decreased apoptosis. We observed that siRNA silencing of the glucose-regulated protein (GRP78) receptor and pharmacological inhibitors of mitogen-activated kinase (MAP3/1/ERK1/2), Janus kinase (STAT3) and protein kinase B (AKT) blocked the ability of vaspin cell proliferation and enhanced caspase-3/7 activities. These results suggest that vaspin via mitogenic effect on porcine Gc acts as a new regulator of ovarian growth, development, or folliculogenesis.


Assuntos
Apoptose/genética , Proliferação de Células/genética , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Células da Granulosa/fisiologia , Serpinas/genética , Transdução de Sinais/genética , Animais , Caspases/genética , Chaperona BiP do Retículo Endoplasmático , Feminino , Proteínas de Choque Térmico/genética , Humanos , MAP Quinase Quinase Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Fator de Transcrição STAT3/genética , Suínos
14.
Int J Mol Sci ; 20(7)2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30934676

RESUMO

Adiponectin is the most abundant plasma adipokine. It mainly derives from white adipose tissue and plays a key role in the control of energy metabolism thanks to its insulin-sensitising, anti-inflammatory, and antiatherogenic properties. In vitro and in vivo evidence shows that adiponectin could also be one of the hormones controlling the interaction between energy balance and fertility in several species, including humans. Indeed, its two receptors-AdipoR1 and AdipoR2-are expressed in hypothalamic⁻pituitary⁻gonadal axis and their activation regulates Kiss, GnRH and gonadotropin expression and/or secretion. In male gonads, adiponectin modulates several functions of both somatic and germ cells, such as steroidogenesis, proliferation, apoptosis, and oxidative stress. In females, it controls steroidogenesis of ovarian granulosa and theca cells, oocyte maturation, and embryo development. Adiponectin receptors were also found in placental and endometrial cells, suggesting that this adipokine might play a crucial role in embryo implantation, trophoblast invasion and foetal growth. The aim of this review is to characterise adiponectin expression and its mechanism of action in male and female reproductive tract. Further, since features of metabolic syndrome are associated with some reproductive diseases, such as polycystic ovary syndrome, gestational diabetes mellitus, preeclampsia, endometriosis, foetal growth restriction and ovarian and endometrial cancers, evidence regarding the emerging role of adiponectin in these disorders is also discussed.


Assuntos
Adiponectina/metabolismo , Fertilidade , Gametogênese , Adiponectina/química , Animais , Desenvolvimento Embrionário , Feminino , Humanos , Modelos Animais , Gravidez , Receptores de Adiponectina/metabolismo
15.
Rocz Panstw Zakl Hig ; 69(2): 209-217, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29766700

RESUMO

Background: Health Policy Program (Program Polityki Zdrowotnej ­ PPZ) is a state policy tool for engaging local government units into the mechanism of granting provision of health services. Authors show areas in which self-governments most often took preventive health care actions and describe legislative changes in the Act on provision of health services. Objective: The aim of the article is to quantitative and qualitative statement of PPZ prepared in Poland in 2016 and 2017, as well as presenting changing legal situation in the scope of evaluation of these projects. Materials and methods: Authors use descriptive method, presenting changes of legal status. The article includes data available in the Bulletin of Public Information by The Agency for Health Technology Assessment. 590 programs were analyzed (239 from 2016 and 351 from 2017). Results: In 2016 ­ 67% of submitted programs were given a positive opinion and in 2017 ­ 71%. The most of positively evaluated PPZ submitted by local government units (53% in 2016; 47% in 2017) referred to prevention of infectious diseases by vaccines. On the basis of analyses conducted, significant differences were observed in the implementation of the PPZ in various regions of Poland. Conclusions: In the recent years a big improvement in the quality of planned self-government health programs is observed. It is suggested that due to the regulation defining the model of the health policy program and the model of the final report, this trend will continue.


Assuntos
Política de Saúde , Promoção da Saúde/organização & administração , Programas Nacionais de Saúde/organização & administração , Prática de Saúde Pública/estatística & dados numéricos , Feminino , Planejamento em Saúde/organização & administração , Humanos , Masculino , Polônia , Programas Médicos Regionais/organização & administração
16.
PLoS One ; 19(2): e0297875, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38408058

RESUMO

Omentin (ITLN1) is a novel adipokine mainly expressed in the white adipose tissue. It plays a crucial role in the metabolic homeostasis and insulin sensitivity. Our last study documented that ITLN1 levels in the adipose tissue and plasma are lower in fat Meishan (MS) compared to normal weight Large White (LW) pigs. The aim of this study was to investigate transcript and protein concentrations of ITLN1 as well as its immunolocalisation in the ovarian follicles and examine the molecular mechanism involved in the regulation of its expression in response to gonadotropins (FSH, LH) and steroids (P4, T, E2). Ovarian follicles were collected from LW and MS sows on days 2-3, 10-12, and 14-16 of the oestrous. We found the elevated ITLN1 expression in the ovarian follicles and the increase of concentrations in follicular fluid (FF) of LW pigs vs MS pigs; in both breeds of pigs, the levels of ITLN1 increased with the oestrous progression. We noted ITLN1 signals in oocyte, granulosa and theca cells. Gonadotropins and steroids increased ITLN1 levels in the ovarian follicle cells of LW pigs, while in MS pigs, we observed only the stimulatory effect of LH and T. Both extracellular signal-regulated kinase (ERK1/2) and phosphatidylinositol 3'-kinase (PI3K) were involved in the regulation of ITLN1. Our study demonstrated the levels and regulation of ITLN1 in the porcine ovarian follicles through ERK1/2 and PI3K signaling pathways.


Assuntos
Sistema de Sinalização das MAP Quinases , Fosfatidilinositol 3-Quinases , Feminino , Suínos , Animais , Fosfatidilinositol 3-Quinases/metabolismo , Folículo Ovariano/metabolismo , Esteroides/metabolismo , Gonadotropinas/farmacologia , Estradiol/metabolismo , Hormônio Foliculoestimulante/metabolismo
17.
Reprod Biol ; 24(1): 100827, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38016195

RESUMO

Phoenixin-14 (PNX-14) regulates energy metabolism via the G protein-coupled receptor 173 (GPR173); elevated plasma levels have been described in patients with polycystic ovary syndrome. The aims were to investigate the ovarian expression of PNX-14/GPR173 and the in vitro effect of PNX-14 on granulosa cells (Gc) function. Transcript and protein levels of PNX-14/GRP173 were analysed by real-time PCR, western blot and immunohistochemistry in the porcine ovarian follicles at days 2-3, 10-12 and 16-18 of the oestrous. For in vitro experiments, Gc were isolated from follicles at days 10-12 of the oestrous (4-6 mm) and PNX-14 at doses 1-1000 nM was added for 24-72 h to determine Gc proliferation. Cell cycle progression, E2 secretion, expression of proliferating cells nuclear antigen, cyclins, mitogen-activated kinase (MAP3/1; ERK1/2), protein kinase B (AKT) and signal transducer and activator of transcription 3 (STAT3) were studied. The involvement of these kinases in PNX-14 action on Gc proliferation was analysed using pharmacological inhibitors. Levels of GPR173 were increased in the ovarian follicles with oestrous progression, while only PNX-14 protein was the highest at days 10-12 of the oestrous. Immuno-signal of PNX-14 was detected in Gc and theca cells and oocyte, while GPR173 was mostly in theca. Interestingly, PNX-14 stimulated Gc proliferation, E2 secretion, cell cycle progression and cyclins expression and had a modulatory effect on MAP3/1, AKT and STAT3 activation. Our study suggests that PNX-14 could be an important factor for porcine reproduction by influencing ovarian follicle growth through direct action on Gc function.


Assuntos
Células da Granulosa , Proteínas Proto-Oncogênicas c-akt , Feminino , Humanos , Animais , Suínos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Folículo Ovariano/metabolismo , Ovário , Ciclinas/metabolismo , Ciclinas/farmacologia
18.
Adv Clin Chem ; 121: 172-269, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38797542

RESUMO

Reproductive success consists of a sequential events chronology, starting with the ovum fertilization, implantation of the embryo, placentation, and cellular processes like proliferation, apoptosis, angiogenesis, endocrinology, or metabolic changes, which taken together finally conduct the birth of healthy offspring. Currently, many factors are known that affect the regulation and proper maintenance of pregnancy in humans, domestic animals, or rodents. Among the determinants of reproductive success should be distinguished: the maternal microenvironment, genes, and proteins as well as numerous pregnancy hormones that regulate the most important processes and ensure organism homeostasis. It is well known that white adipose tissue, as the largest endocrine gland in our body, participates in the synthesis and secretion of numerous hormones belonging to the adipokine family, which also may regulate the course of pregnancy. Unfortunately, overweight and obesity lead to the expansion of adipose tissue in the body, and its excess in both women and animals contributes to changes in the synthesis and release of adipokines, which in turn translates into dramatic changes during pregnancy, including those taking place in the organ that is crucial for the proper progress of pregnancy, i.e. the placenta. In this chapter, we are summarizing the current knowledge about levels of adipokines and their role in the placenta, taking into account the physiological and pathological conditions of pregnancy, e.g. gestational diabetes mellitus, preeclampsia, or intrauterine growth restriction in humans, domestic animals, and rodents.


Assuntos
Adipocinas , Gravidez , Humanos , Adipocinas/metabolismo , Feminino , Animais , Placenta/metabolismo , Diabetes Gestacional/metabolismo
19.
Theriogenology ; 211: 28-39, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37562189

RESUMO

Recent studies have demonstrated that visfatin participates in the regulation of female reproduction. Due to the lack of data concerning the level of visfatin in the ovarian follicles of pigs, one of the most economically important livestock species, the aim of this study was to investigate the expression and localisation of visfatin and the follicular fluid concentration in the ovarian follicles of prepubertal and mature gilts. We also aimed to examine the in vitro effects of gonadotropins (LH, FSH), insulin, progesterone (P4), oestradiol (E2), prostaglandin E2 (PGE2) and F2α (PGF2α) on visfatin levels. In the present study, we have demonstrated that visfatin expression is dependent on the maturity of the animals and the stage of ovarian follicle development. Visfatin signal was detected in individual follicular compartments from primordial to antral follicles and even in atretic follicles. We have shown that the expression of visfatin in granulosa cells was higher than in theca cells. The level of visfatin is upregulated by LH, FSH, E2, and P4 and downregulated by insulin, while prostaglandins have modulatory effects, dependent on the dose and type of ovarian follicular cells. To summarise, our research has shown that visfatin is widely expressed in the ovarian follicles of prepubertal and mature pigs, and its expression is regulated by gonadotropins, insulin, steroids, and prostaglandins, suggesting that visfatin appears to be an important intra-ovarian factor that could regulate porcine ovarian follicular function.


Assuntos
Insulina , Prostaglandinas , Feminino , Suínos , Animais , Prostaglandinas/farmacologia , Prostaglandinas/metabolismo , Insulina/farmacologia , Insulina/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Folículo Ovariano/fisiologia , Células da Granulosa/metabolismo , Esteroides/metabolismo , Gonadotropinas/farmacologia , Progesterona/farmacologia , Progesterona/metabolismo , Estradiol/farmacologia , Dinoprostona/metabolismo , Hormônio Foliculoestimulante/farmacologia , Hormônio Foliculoestimulante/metabolismo , Sus scrofa
20.
Sci Rep ; 13(1): 18253, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880346

RESUMO

Visfatin is a multifunctional protein which, besides the control of energy homeostasis, seems to be also involved in the regulation of female fertility through the influence on the endocrine hypothalamus-pituitary-gonadal axis, including the pituitary. The aim of this study was to investigate the expression of visfatin mRNA and protein in the anterior (AP) and posterior pituitary lobes of the pig during the oestrous cycle and early pregnancy. In AP, we also examined colocalisation of visfatin with pituitary tropic hormones. Moreover, we aimed to evaluate the in vitro effects of GnRH, FSH, LH, and insulin on visfatin protein concentration and secretion in AP cells during the cycle. The study showed that visfatin is present in all types of porcine pituitary endocrine cells and its expression is reliant on stage of the cycle or pregnancy. GnRH, FSH, LH and insulin stimulated visfatin secretion by AP cells on days 17 to 19 of the cycle, while on days 2 to 3 visfatin release was enhanced only by LH. Summarising, visfatin is locally produced in the pituitary in a way dependent on hormonal milieu typical for reproductive status of pigs. Further research is required to clarify the role of visfatin in the pituitary gland.


Assuntos
Insulinas , Hormônio Luteinizante , Gravidez , Feminino , Animais , Suínos , Hormônio Luteinizante/metabolismo , Nicotinamida Fosforribosiltransferase/genética , Nicotinamida Fosforribosiltransferase/metabolismo , Hipófise/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Foliculoestimulante/metabolismo , Insulinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA