Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Eur Radiol ; 33(12): 8974-8985, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37368108

RESUMO

OBJECTIVES: Image-based detection of intralesional fat in focal liver lesions has been established in diagnostic guidelines as a feature indicative of hepatocellular carcinoma (HCC) and associated with a favorable prognosis. Given recent advances in MRI-based fat quantification techniques, we investigated a possible relationship between intralesional fat content and histologic tumor grade in steatotic HCCs. METHODS: Patients with histopathologically confirmed HCC and prior MRI with proton density fat fraction (PDFF) mapping were retrospectively identified. Intralesional fat of HCCs was assessed using an ROI-based analysis and the median fat fraction of steatotic HCCs was compared between tumor grades G1-3 with non-parametric testing. ROC analysis was performed in case of statistically significant differences (p < 0.05). Subgroup analyses were conducted for patients with/without liver steatosis and with/without liver cirrhosis. RESULTS: A total of 57 patients with steatotic HCCs (62 lesions) were eligible for analysis. The median fat fraction was significantly higher for G1 lesions (median [interquartile range], 7.9% [6.0─10.7%]) than for G2 (4.4% [3.2─6.6%]; p = .001) and G3 lesions (4.7% [2.8─7.8%]; p = .036). PDFF was a good discriminator between G1 and G2/3 lesions (AUC .81; cut-off 5.8%, sensitivity 83%, specificity 68%) with comparable results in patients with liver cirrhosis. In patients with liver steatosis, intralesional fat content was higher than in the overall sample, with PDFF performing better in distinguishing between G1 and G2/3 lesions (AUC .92; cut-off 8.8%, sensitivity 83%, specificity 91%). CONCLUSIONS: Quantification of intralesional fat using MRI PDFF mapping allows distinction between well- and less-differentiated steatotic HCCs. CLINICAL RELEVANCE: PDFF mapping may help optimize precision medicine as a tool for tumor grade assessment in steatotic HCCs. Further investigation of intratumoral fat content as a potential prognostic indicator of treatment response is encouraged. KEY POINTS: • MRI proton density fat fraction mapping enables distinction between well- (G1) and less- (G2 and G3) differentiated steatotic hepatocellular carcinomas. • In a retrospective single-center study with 62 histologically proven steatotic hepatocellular carcinomas, G1 tumors showed a higher intralesional fat content than G2 and G3 tumors (7.9% vs. 4.4% and 4.7%; p = .004). • In liver steatosis, MRI proton density fat fraction mapping was an even better discriminator between G1 and G2/G3 steatotic hepatocellular carcinomas.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Carcinoma Hepatocelular/complicações , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/patologia , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Estudos Retrospectivos , Prótons , Neoplasias Hepáticas/complicações , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/patologia , Imageamento por Ressonância Magnética/métodos , Cirrose Hepática/patologia
2.
Sci Rep ; 14(1): 18033, 2024 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-39098935

RESUMO

Light sheet fluorescence microscopy (LSFM) is a transformative imaging method that enables the visualization of non-dissected specimen in real-time 3D. Optical clearing of tissues is essential for LSFM, typically employing toxic solvents. Here, we test the applicability of a non-hazardous alternative, ethyl cinnamate (ECi). We comprehensively characterized autofluorescence (AF) spectra in diverse murine tissues-ocular globe, knee, and liver-employing LSFM under various excitation wavelengths (405-785 nm) to test the feasibility of unstained samples for diagnostic purposes, in particular regarding percutaneous biopsies, as they constitute to most harvested type of tissue sample in clinical routine. Ocular globe structures were best discerned with 640 nm excitation. Knee tissue showed complex variation in AF spectra variation influenced by tissue depth and structure. Liver exhibited a unique AF pattern, likely linked to vasculature. Hepatic tissue samples were used to demonstrate the compatibility of our protocol for antibody staining. Furthermore, we employed machine learning to augment raw images and segment liver structures based on AF spectra. Radiologists rated representative samples transferred to the clinical assessment software. Learning-generated images scored highest in quality. Additionally, we investigated an actual murine biopsy. Our study pioneers the application of AF spectra for tissue characterization and diagnostic potential of optically cleared unstained percutaneous biopsies, contributing to the clinical translation of LSFM.


Assuntos
Fígado , Microscopia de Fluorescência , Imagem Óptica , Animais , Camundongos , Microscopia de Fluorescência/métodos , Fígado/diagnóstico por imagem , Fígado/patologia , Imagem Óptica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA