Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Regul Toxicol Pharmacol ; 105: 51-61, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30970268

RESUMO

The Read-Across Assessment Framework (RAAF) was developed by the European Chemicals Agency (ECHA) as an internal tool providing a framework for a consistent, structured and transparent assessment of grouping of chemicals and read-across. Following a RAAF-based evaluation, also developers and users of read-across predictions outside ECHA can judge whether their read-across rationale is sufficiently robust from a regulatory perspective. The aim of this paper is to describe the implementation of RAAF functionalities in the OECD QSAR Toolbox report. These can be activated in the prediction report after performing a readacross prediction. Once the user manually selects the appropriate scenario, the RAAF assessment elements appear and are automatically aligned with the suitable category elements of the Toolbox report. Subsequently, these are evaluated as part of the category consistency assessment functionality. The implementation of the RAAF functionality is illustrated in practice with two examples.


Assuntos
Segurança Química/métodos , Substâncias Perigosas/toxicidade , Medição de Risco/métodos , Humanos , Organização para a Cooperação e Desenvolvimento Econômico , Relação Quantitativa Estrutura-Atividade , Incerteza
2.
Chem Res Toxicol ; 27(2): 219-39, 2014 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-24422459

RESUMO

Chemical respiratory sensitization is an important occupational health problem which may lead to severely incapacitated human health, yet there are currently no validated or widely accepted models for identifying and characterizing the potential of a chemical to induce respiratory sensitization. This is in part due to the ongoing uncertainty about the immunological mechanisms through which respiratory sensitization may be acquired. Despite the lack of test method, regulations such as REACH still require an assessment of respiratory sensitization for risk assessment and/or for the purposes of classification and labeling. The REACH guidance describes an integrated evaluation strategy to characterize what information sources could be available to facilitate such an assessment. The components of this include a consideration of well-established structural alerts and existing data (whether it be derived from read-across, (quantitative) structure-activity relationships ((Q)SAR), in vivo studies etc.). There has been some progress in developing SARs as well as a handful of empirical QSARs. More recently, efforts have been focused on exploring whether the reaction chemistry mechanistic domains first characterized for skin sensitization are relevant for respiratory sensitization and to what extent modifications or refinements are needed to rationalize the differences between the two end points as far as their chemistry is concerned. This study has built upon the adverse outcome pathway (AOP) for skin sensitization that was developed and published by the OECD in 2012. We have structured a workflow to characterize the initiating events that are relevant in driving respiratory sensitization. OASIS pipeline technology was used to encode these events as components in a software platform to enable a prediction of respiratory sensitization potential to be made for new untested chemicals. This prediction platform could be useful in the assessment of respiratory sensitization potential or for grouping chemicals for subsequent read-across.


Assuntos
Poluentes Ocupacionais do Ar/toxicidade , Alérgenos/toxicidade , Modelos Biológicos , Hipersensibilidade Respiratória/etiologia , Poluentes Ocupacionais do Ar/química , Poluentes Ocupacionais do Ar/farmacocinética , Alérgenos/química , Alérgenos/farmacocinética , Animais , Disponibilidade Biológica , Cisteína/química , Dermatite Alérgica de Contato/etiologia , Humanos , Fígado/metabolismo , Pulmão/metabolismo , Lisina/química , Peptídeos/química , Ligação Proteica , Medição de Risco/métodos , Pele/metabolismo , Relação Estrutura-Atividade
3.
Regul Toxicol Pharmacol ; 69(3): 529-45, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24928565

RESUMO

Since the OECD published the Adverse Outcome Pathway (AOP) for skin sensitization, many efforts have focused on how to integrate and interpret nonstandard information generated for key events in a manner that can be practically useful for decision making. These types of frameworks are known as Integrated Approaches to Testing and Assessment (IATA). Here we have outlined an IATA for skin sensitization which focuses on existing information including non testing approaches such as QSAR and read-across. The IATA was implemented into a pipeline tool using OASIS technology to provide a means of systematically collating and compiling relevant information which could be used in an assessment of skin sensitization potential. A test set of 100 substances with available skin sensitization information was profiled using the pipeline IATA. In silico and in chemico profiling information alone was able to correctly predict skin sensitization potential, with a preliminary accuracy of 73.85%. Information from other relevant endpoints (e.g., Ames mutagenicity) was found to improve the accuracy (to 87.6%) when coupled with a reaction chemistry mechanistic understanding. This pipeline platform could be useful in the assessment of skin sensitization potential and marks a step change in how non testing approaches can be practically applied.


Assuntos
Alérgenos/química , Alérgenos/imunologia , Pele/imunologia , Linhagem Celular Tumoral , Dermatite Alérgica de Contato/etiologia , Dermatite Alérgica de Contato/imunologia , Humanos , Organização para a Cooperação e Desenvolvimento Econômico , Ligação Proteica/imunologia , Relação Quantitativa Estrutura-Atividade , Medição de Risco , Células Th1 , Células U937
4.
Chem Res Toxicol ; 23(10): 1519-40, 2010 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-20845941

RESUMO

Skin sensitization is an end point of concern for various legislation in the EU, including the seventh Amendment to the Cosmetics Directive and Registration Evaluation, Authorisation and Restriction of Chemicals (REACH). Since animal testing is a last resort for REACH or banned (from 2013 onward) for the Cosmetics Directive, the use of intelligent/integrated testing strategies (ITS) as an efficient means of gathering necessary information from alternative sources (e.g., in vitro, (Q)SARs, etc.) is gaining widespread interest. Previous studies have explored correlations between mutagenicity data and skin sensitization data as a means of exploiting information from surrogate end points. The work here compares the underlying chemical mechanisms for mutagenicity and skin sensitization in an effort to evaluate the role mutagenicity information can play as a predictor of skin sensitization potential. The Tissue Metabolism Simulator (TIMES) hybrid expert system was used to compare chemical mechanisms of both end points since it houses a comprehensive set of established structure-activity relationships for both skin sensitization and mutagenicity. The evaluation demonstrated that there is a great deal of overlap between skin sensitization and mutagenicity structural alerts and their underlying chemical mechanisms. The similarities and differences in chemical mechanisms are discussed in light of available experimental data. A number of new alerts for mutagenicity were also postulated for inclusion into TIMES. The results presented show that mutagenicity information can provide useful insights on skin sensitization potential as part of an ITS and should be considered prior to any in vivo skin sensitization testing being initiated.


Assuntos
Cosméticos/toxicidade , Pele/efeitos dos fármacos , Alternativas aos Testes com Animais , Animais , Cosméticos/química , Cosméticos/metabolismo , DNA/metabolismo , Modelos Teóricos , Testes de Mutagenicidade , Ligação Proteica , Proteínas/metabolismo , Linfócitos T/imunologia
5.
Methods Mol Biol ; 1800: 55-77, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29934887

RESUMO

The OECD QSAR Toolbox is a computer software designed to make pragmatic qualitative and quantitative structure-activity relationship methods-based predictions of toxicity, including read-across, available to the user in a comprehensible and transparent manner. The Toolbox, provide information on chemicals in structure-searchable, standardized files that are associated with chemical and toxicity data to ensure that proper structural analogs can be identified. This chapter describes the advantages of the Toolbox, the aims, approach, and workflow of it, as well as reviews its history. Additionally, key functional elements of it use are explained and features new to Version 4.1 are reported. Lastly, the further development of the Toolbox, likely needed to transform it into a more comprehensive Chemical Management System, is considered.


Assuntos
Relação Quantitativa Estrutura-Atividade , Software , Estrogênios/química , Estrogênios/metabolismo , Modelos Químicos , Organização para a Cooperação e Desenvolvimento Econômico , Receptores de Estrogênio/química , Receptores de Estrogênio/metabolismo , Fluxo de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA