Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Am J Respir Crit Care Med ; 204(11): 1306-1316, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34464235

RESUMO

Rationale: Patients with indeterminate pulmonary nodules (IPNs) at risk of cancer undergo high rates of invasive, costly, and morbid procedures. Objectives: To train and externally validate a risk prediction model that combined clinical, blood, and imaging biomarkers to improve the noninvasive management of IPNs. Methods: In this prospectively collected, retrospective blinded evaluation study, probability of cancer was calculated for 456 patient nodules using the Mayo Clinic model, and patients were categorized into low-, intermediate-, and high-risk groups. A combined biomarker model (CBM) including clinical variables, serum high sensitivity CYFRA 21-1 level, and a radiomic signature was trained in cohort 1 (n = 170) and validated in cohorts 2-4 (total n = 286). All patients were pooled to recalibrate the model for clinical implementation. The clinical utility of the CBM compared with current clinical care was evaluated in 2 cohorts. Measurements and Main Results: The CBM provided improved diagnostic accuracy over the Mayo Clinic model with an improvement in area under the curve of 0.124 (95% bootstrap confidence interval, 0.091-0.156; P < 2 × 10-16). Applying 10% and 70% risk thresholds resulted in a bias-corrected clinical reclassification index for cases and control subjects of 0.15 and 0.12, respectively. A clinical utility analysis of patient medical records estimated that a CBM-guided strategy would have reduced invasive procedures from 62.9% to 50.6% in the intermediate-risk benign population and shortened the median time to diagnosis of cancer from 60 to 21 days in intermediate-risk cancers. Conclusions: Integration of clinical, blood, and image biomarkers improves noninvasive diagnosis of patients with IPNs, potentially reducing the rate of unnecessary invasive procedures while shortening the time to diagnosis.


Assuntos
Carcinoma/diagnóstico por imagem , Carcinoma/metabolismo , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/metabolismo , Nódulos Pulmonares Múltiplos/diagnóstico por imagem , Nódulos Pulmonares Múltiplos/metabolismo , Idoso , Biomarcadores/metabolismo , Carcinoma/patologia , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Humanos , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Nódulos Pulmonares Múltiplos/patologia , Valor Preditivo dos Testes , Curva ROC , Fatores de Risco , Tomografia Computadorizada por Raios X
2.
J Lipid Res ; 61(8): 1244-1251, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32513900

RESUMO

Native interactions between lysophospholipids (LPs) and their cognate LP receptors are difficult to measure because of lipophilicity and/or the adhesive properties of lipids, which contribute to high levels of nonspecific binding in cell membrane preparations. Here, we report development of a free-solution assay (FSA) where label-free LPs bind to their cognate G protein-coupled receptors (GPCRs), combined with a recently reported compensated interferometric reader (CIR) to quantify native binding interactions between receptors and ligands. As a test case, the binding parameters between lysophosphatidic acid (LPA) receptor 1 (LPA1; one of six cognate LPA GPCRs) and LPA were determined. FSA-CIR detected specific binding through the simultaneous real-time comparison of bound versus unbound species by measuring the change in the solution dipole moment produced by binding-induced conformational and/or hydration changes. FSA-CIR identified KD values for chemically distinct LPA species binding to human LPA1 and required only a few nanograms of protein: 1-oleoyl (18:1; KD = 2.08 ± 1.32 nM), 1-linoleoyl (18:2; KD = 2.83 ± 1.64 nM), 1-arachidonoyl (20:4; KD = 2.59 ± 0.481 nM), and 1-palmitoyl (16:0; KD = 1.69 ± 0.1 nM) LPA. These KD values compared favorably to those obtained using the previous generation back-scattering interferometry system, a chip-based technique with low-throughput and temperature sensitivity. In conclusion, FSA-CIR offers a new increased-throughput approach to assess quantitatively label-free lipid ligand-receptor binding, including nonactivating antagonist binding, under near-native conditions.


Assuntos
Bioensaio , Receptores de Ácidos Lisofosfatídicos/metabolismo , Interferometria , Ligantes , Luz , Ligação Proteica
3.
J Lipid Res ; 60(1): 212-217, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30463988

RESUMO

Lysophosphatidic acid (LPA) activates cognate G protein-coupled receptors (GPCRs) to initiate biological signaling cascades. Lysophospholipid (LP) receptor binding properties remain incompletely assessed because of difficulties with ligand lipophilicity and lipid "stickiness." These inherent attributes produce high levels of nonspecific binding within cell-membrane preparations used to assess GPCRs, as has been shown in classical binding assays using radiolabeled ligands, making accurate measurements of lipid binding kinetics difficult to achieve. Backscattering interferometry (BSI) is an optical technology that measures molecular binding interactions by reporting changes in the refractive index of a solution after binding events. Here, we report the use of BSI to assess LPA1 for its ability to bind to naturally occurring lipids and a synthetic LPA1 antagonist (ONO-9780307), under both primary- and competition-binding conditions. Assessment of 12 different lipids demonstrated that the known LP ligand, 1-oleoyl-LPA, as well as an endocannabinoid metabolite, anandamide phosphate, are specific ligands for LPA1, whereas other LPs tested were not. Newly determined dissociation constants (Kd values) for orthosteric lipid ligands approximated 10-9 M, substantially lower (i.e., with higher affinity) than measured Kd values in classical binding or cell-based assays. These results demonstrate that BSI may have particular utility in assessing binding interactions between lipid receptors and their lipid ligands and could provide new screening approaches for lipid receptor identification and drug discovery.


Assuntos
Interferometria/métodos , Luz , Lisofosfolipídeos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Ligação Competitiva , Linhagem Celular , Ligantes , Ligação Proteica , Espalhamento de Radiação , Especificidade por Substrato
4.
Anal Chem ; 91(16): 10582-10588, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31314489

RESUMO

The opioid epidemic continues in the United States. Many have been impacted by this epidemic, including neonates who exhibit Neonatal Abstinence Syndrome (NAS). Opioid diagnosis and NAS can be negatively impacted by limited testing options outside the hospital, due to poor assay performance, false-negatives, rapid drug clearance rates, and difficulty in obtaining enough specimen for testing. Here we report a small volume urine assay for oxycodone, hydrocodone, fentanyl, noroxycodone, norhydrocodone, and norfentanyl with excellent LODs and LOQs. The free-solution assay (FSA), coupled with high affinity DNA aptamer probes and a compensated interferometric reader (CIR), represents a potential solution for quantifying opioids rapidly, at high sensitivity, and noninvasively on small sample volumes. The mix-and-read test is 5- to 275-fold and 50- to 1250-fold more sensitive than LC-MS/MS and immunoassays, respectively. Using FSA, oxycodone, hydrocodone, fentanyl, and their urinary metabolites were quantified using 10 µL of urine at 28-81 pg/mL, with >95% specificity and excellent accuracy in ∼1 h. The assay sensitivity, small sample size requirement, and speed could enable opioid screening, particularly for neonates, and points to the potential for pharmacokinetic tracking.


Assuntos
Analgésicos Opioides/urina , Aptâmeros de Nucleotídeos/química , Analgésicos Opioides/metabolismo , Fentanila/metabolismo , Fentanila/urina , Humanos , Hidrocodona/análogos & derivados , Hidrocodona/metabolismo , Hidrocodona/urina , Estrutura Molecular , Morfinanos/metabolismo , Morfinanos/urina , Oxicodona/metabolismo , Oxicodona/urina
5.
Proc Natl Acad Sci U S A ; 113(12): E1595-604, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26960999

RESUMO

Interaction/reaction assays have led to significant scientific discoveries in the biochemical, medical, and chemical disciplines. Several fundamental driving forces form the basis of intermolecular and intramolecular interactions in chemical and biochemical systems (London dispersion, hydrogen bonding, hydrophobic, and electrostatic), and in the past three decades the sophistication and power of techniques to interrogate these processes has developed at an unprecedented rate. In particular, label-free methods have flourished, such as NMR, mass spectrometry (MS), surface plasmon resonance (SPR), biolayer interferometry (BLI), and backscattering interferometry (BSI), which can facilitate assays without altering the participating components. The shortcoming of most refractive index (RI)-based label-free methods such as BLI and SPR is the requirement to tether one of the interaction entities to a sensor surface. This is not the case for BSI. Here, our hypothesis is that the signal origin for free-solution, label-free determinations can be attributed to conformation and hydration-induced changes in the solution RI. We propose a model for the free-solution response function (FreeSRF) and show that, when quality bound and unbound structural data are available, FreeSRF correlates well with the experiment (R(2)> 0.99, Spearman rank correlation coefficients >0.9) and the model is predictive within ∼15% of the experimental binding signal. It is also demonstrated that a simple mass-weighted dη/dC response function is the incorrect equation to determine that the change in RI is produced by binding or folding event in free solution.


Assuntos
Interferometria/métodos , Ligação de Hidrogênio , Modelos Químicos , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Refratometria , Sensibilidade e Especificidade , Soluções , Solventes , Água
6.
Opt Lett ; 43(3): 482-485, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29400820

RESUMO

Longitudinal averaging of the interference pattern in a compensated backscattering interferometer provides improved compensation for temperature induced refractive index perturbations. Fringe pattern likeness between two discrete detection regions of an off-the-shelf microfluidic chip illuminated by an inexpensive diode laser scales with interrogation length. Averaging the intensity distribution along a 2.75 mm length of the channel results in a 750-fold reduction in sensitivity to temperature and a baseline noise level of 3×10-8 refractive index units (RIU). These observations enable nanoliter-volume interferometric measurements at a level of 10-7 RIU in the presence of a 2°C temperature variation without the need for temperature control.

7.
Malar J ; 14: 88, 2015 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-25889240

RESUMO

BACKGROUND: Invasion of host erythrocytes by Plasmodium falciparum is central to the pathogenesis of malaria. Invasion involves recognition events between erythrocyte receptors and ligands on the merozoite, the invasive blood form of the parasite. Identifying and characterizing host-parasite interactions is impeded by the biochemical challenges of working with membrane-embedded glycoprotein receptors. For example, the interaction between P. falciparum erythrocyte binding antigen 175 (PfEBA175) and glycophorin A (GYPA) depends on post-translational modifications that are not easily added in recombinant expression systems, and the use of native GYPA is limited by the hydrophobic transmembrane region, making it difficult to biochemically manipulate. It would, therefore, be desirable to perform quantitative binding assays with receptors embedded within the membranes of intact human erythrocytes. METHODS: The extracellular region of GYPA was over-expressed as a soluble protein in HEK293E cells. This protein was characterized, sialylated and evaluated for binding to the PfEBA175 protein. The label-free and free-solution assay, backscattering interferometry (BSI), was used to perform binding assays of two well-characterized P. falciparum invasion ligands to intact unmodified human erythrocytes. RESULTS: Findings indicate that the post-translational modifications present on native GYPA are required for it to bind recombinant PfEBA175 and that these modifications cannot be recapitulated in vitro using mammalian overexpression methods. Here, BSI was used to obtain quantitative, high fidelity interaction determinations on intact, unmodified erythrocytes. Using BSI and purified recombinant proteins constituting the entire ectodomains of the P. falciparum merozoite ligands PfEBA175 and PfRH5, K Ds of 1.1 µM and 50 nM were measured for the PfRH5-BSG and PfEBA175-GYPA interactions, respectively, in good agreement with previous biophysical measurements of these interactions. CONCLUSIONS: These results demonstrate that BSI can be used to detect and quantify the interactions of two merozoite invasion ligands with their receptors on intact human erythrocytes. BSI assays were performed on unlabelled, free-solution proteins in their native environment, requiring only nanomoles of recombinant protein. This study suggests that BSI can be used to investigate host-parasite protein interactions without the limitations of other assay platforms, and therefore represents a valuable new method to investigate the molecular mechanisms involved in erythrocyte invasion by P. falciparum.


Assuntos
Antígenos de Protozoários/metabolismo , Proteínas de Transporte/metabolismo , Eritrócitos/parasitologia , Glicoforinas/metabolismo , Interações Hospedeiro-Parasita , Plasmodium falciparum/fisiologia , Processamento de Proteína Pós-Traducional , Proteínas de Protozoários/metabolismo , Antígenos de Protozoários/genética , Proteínas de Transporte/genética , Eritrócitos/metabolismo , Glicoforinas/genética , Interferometria , Malária Falciparum/parasitologia , Malária Falciparum/fisiopatologia , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
8.
J Neurosci ; 33(28): 11643-54, 2013 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-23843532

RESUMO

CXCR4, a receptor for the chemokine CXCL12 (stromal-cell derived factor-1α), is a G-protein-coupled receptor (GPCR), expressed in the immune and CNS and integrally involved in various neurological disorders. The GABAB receptor is also a GPCR that mediates metabotropic action of the inhibitory neurotransmitter GABA and is located on neurons and immune cells as well. Using diverse approaches, we report novel interaction between GABAB receptor agents and CXCR4 and demonstrate allosteric binding of these agents to CXCR4. First, both GABAB antagonists and agonists block CXCL12-elicited chemotaxis in human breast cancer cells. Second, a GABAB antagonist blocks the potentiation by CXCL12 of high-threshold Ca(2+) channels in rat neurons. Third, electrophysiology in Xenopus oocytes and human embryonic kidney cell line 293 cells in which we coexpressed rat CXCR4 and the G-protein inward rectifier K(+) (GIRK) channel showed that GABAB antagonist and agonist modified CXCL12-evoked activation of GIRK channels. To investigate whether GABAB ligands bind to CXCR4, we expressed this receptor in heterologous systems lacking GABAB receptors and performed competition binding experiments. Our fluorescent resonance energy transfer experiments suggest that GABAB ligands do not bind CXCR4 at the CXCL12 binding pocket suggesting allosteric modulation, in accordance with our electrophysiology experiments. Finally, using backscattering interferometry and lipoparticles containing only the CXCR4 receptor, we quantified the binding affinity for the GABAB ligands, confirming a direct interaction with the CXCR4 receptor. The effect of GABAergic agents on CXCR4 suggests new therapeutic potentials for neurological and immune diseases.


Assuntos
Baclofeno/farmacologia , Quimiocina CXCL12/metabolismo , Agonistas dos Receptores de GABA-B/metabolismo , Receptores CXCR4/metabolismo , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Animais , Baclofeno/metabolismo , Linhagem Celular Tumoral , Feminino , GABAérgicos/metabolismo , Agonistas dos Receptores de GABA-B/farmacologia , Células HEK293 , Humanos , Masculino , Técnicas de Cultura de Órgãos , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Ratos , Ratos Wistar , Xenopus laevis
9.
Anal Chem ; 86(15): 7566-74, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-24954171

RESUMO

Realizing personalized medicine, which promises to enable early disease detection, efficient diagnostic staging, and therapeutic efficacy monitoring, hinges on biomarker quantification in patient samples. Yet, the lack of a sensitive technology and assay methodology to rapidly validate biomarker candidates continues to be a bottleneck for clinical translation. In our first direct and quantitative comparison of backscattering interferometry (BSI) to fluorescence sensing by ELISA, we show that BSI could aid in overcoming this limitation. The analytical validation study was performed against ELISA for two biomarkers for lung cancer detection: Cyfra 21-1 and Galectin-7. Spiked serum was used for calibration and comparison of analytical figures of merit, followed by analysis of blinded patient samples. Using the ELISA antibody as the probe chemistry in a mix-and-read assay, BSI provided significantly lower detection limits for spiked serum samples with each of the biomarkers. The limit of quantification (LOQ) for Cyrfa-21-1 was measured to be 230 pg/mL for BSI versus 4000 pg/mL for ELISA, and for Galectin-7, it was 13 pg/mL versus 500 pg/mL. The coefficient of variation for 5 day, triplicate determinations was <15% for BSI and <10% for ELISA. The two techniques correlated well, ranging from 3-29% difference for Cyfra 21-1 in a blinded patient sample analysis. The label-free and free-solution operation of BSI allowed for a significant improvement in analysis speed, with greater ease, improved LOQ values, and excellent day-to-day reproducibility. In this unoptimized format, BSI required 5.5-fold less sample quantity needed for ELISA (a 10 point calibration curve measured in triplicate required 36 µL of serum for BSI vs 200 µL for ELISA). The results indicate that the BSI platform can enable rapid, sensitive analytical validation of serum biomarkers and should significantly impact the validation bottleneck of biomarkers.


Assuntos
Biomarcadores Tumorais/sangue , Neoplasias Pulmonares/diagnóstico , Antígenos de Neoplasias/sangue , Calibragem , Ensaio de Imunoadsorção Enzimática , Galectinas/sangue , Humanos , Queratina-19/sangue , Limite de Detecção
10.
Analyst ; 139(22): 5879-84, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25229067

RESUMO

Aptamers are segments of single-strand DNA or RNA used in a wide array of applications, including sensors, therapeutics, and cellular process regulators. Aptamers can bind many target species, including proteins, peptides, and small molecules (SM) with high affinity and specificity. They are advantageous because they can be identified in vitro by SELEX, produced rapidly and relatively economically using oligonucleotide synthesis. The use of aptamers as SM probes has experienced a recent rebirth, and because of their unique properties they represent an attractive alternative to antibodies. Current assay methodology for characterizing small molecule-aptamer binding is limited by either mass sensitivity, as in biolayer interferometry (BLI) and surface plasmon resonance (SPR), or the need for using a fluorophore, as in thermophoresis. Here we report that backscattering interferometry (BSI), a label-free and free-solution sensing technique, can be used to effectively characterize SM-aptamer interactions, providing Kd values on microliter sample quantities and at low nanomolar sensitivity. To demonstrate this capability we measured the aptamer affinity for three previously reported small molecules; bisphenol A, tenofovir, and epirubicin showing BSI provided values consistent with those published previously. We then quantified the Kd values for aptamers to ampicillin, tetracycline and norepinephrine. All measurements produced R(2) values >0.95 and an excellent signal to noise ratio at target concentrations that enable true Kd values to be obtained. No immobilization or labeling chemistry was needed, expediting the assay which is also insensitive to the large relative mass difference between the interacting molecules.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnica de Seleção de Aptâmeros , Ressonância de Plasmônio de Superfície
12.
Cancer Biomark ; 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-38073376

RESUMO

BACKGROUND: Assessing the clinical utility of biomarkers is a critical step before clinical implementation. The reclassification of patients across clinically relevant subgroups is considered one of the best methods to estimate clinical utility. However, there are important limitations with this methodology. We recently proposed the intervention probability curve (IPC) which models the likelihood that a provider will choose an intervention as a continuous function of the probability, or risk, of disease. OBJECTIVE: To assess the potential impact of a new biomarker for lung cancer using the IPC. METHODS: The IPC derived from the National Lung Screening Trial was used to assess the potential clinical utility of a biomarker for suspected lung cancer. The summary statistics of the change in likelihood of intervention over the population can be interpreted as the expected clinical impact of the added biomarker. RESULTS: The IPC analysis of the novel biomarker estimated that 8% of the benign nodules could avoid an invasive procedure while the cancer nodules would largely remain unchanged (0.1%). We showed the benefits of this approach compared to traditional reclassification methods based on thresholds. CONCLUSIONS: The IPC methodology can be a valuable tool for assessing biomarkers prior to clinical implementation.

13.
J Thorac Cardiovasc Surg ; 166(3): 669-678.e4, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36792410

RESUMO

OBJECTIVE: Indeterminate pulmonary nodules (IPNs) represent a significant diagnostic burden in health care. We aimed to compare a combination clinical prediction model (Mayo Clinic model), fungal (histoplasmosis serology), imaging (computed tomography [CT] radiomics), and cancer (high-sensitivity cytokeratin fraction 21; hsCYFRA 21-1) biomarker approach to a validated prediction model in diagnosing lung cancer. METHODS: A prospective specimen collection, retrospective blinded evaluation study was performed in 3 independent cohorts with 6- to 30-mm IPNs (n = 281). Serum histoplasmosis immunoglobulin G and immunoglobulin M antibodies and hsCYFRA 21-1 levels were measured and a validated CT radiomic score was calculated. Multivariable logistic regression models were estimated with Mayo Clinic model variables, histoplasmosis antibody levels, CT radiomic score, and hsCYFRA 21-1. Diagnostic performance of the combination model was compared with that of the Mayo Clinic model. Bias-corrected clinical net reclassification index (cNRI) was used to estimate the clinical utility of a combination biomarker approach. RESULTS: A total of 281 patients were included (111 from a histoplasmosis-endemic region). The combination biomarker model including the Mayo Clinic model score, histoplasmosis antibody levels, radiomics, and hsCYFRA 21-1 level showed improved diagnostic accuracy for IPNs compared with the Mayo Clinic model alone with an area under the receiver operating characteristics curve of 0.80 (95% CI, 0.76-0.84) versus 0.72 (95% CI, 0.66-0.78). Use of this combination model correctly reclassified intermediate risk IPNs into low- or high-risk category (cNRI benign = 0.11 and cNRI malignant = 0.16). CONCLUSIONS: The addition of cancer, fungal, and imaging biomarkers improves the diagnostic accuracy for IPNs. Integrating a combination biomarker approach into the diagnostic algorithm of IPNs might decrease unnecessary invasive testing of benign nodules and reduce time to diagnosis for cancer.


Assuntos
Histoplasmose , Neoplasias Pulmonares , Nódulos Pulmonares Múltiplos , Humanos , Histoplasmose/diagnóstico por imagem , Modelos Estatísticos , Estudos Retrospectivos , Estudos Prospectivos , Prognóstico , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Nódulos Pulmonares Múltiplos/patologia , Biomarcadores
14.
Anal Chem ; 84(24): 10817-22, 2012 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-23173653

RESUMO

While it is generally accepted that surface immobilization affects the binding properties of proteins, it has been difficult to quantify these effects due to the lack of technology capable of making affinity measurements with species tethered and in free solution on a single platform. Further, quantifying the interaction of binding pairs with widely differing masses has also been challenging, particularly when it is desirable to tether the high molecular weight protein. Here we describe the use of backscattering interferometry (BSI) to quantify the binding affinity of mannose and glucose to concanavalin A (ConA), a 106 KDa homotetramer protein, in free solution using picomoles of the protein. Using the same platform, BSI, we then studied the effect on the binding constants of the ConA-carbohydrate interactions upon chemically immobilizing ConA on the sensor surface. By varying the distances (0, 7.17, and 20.35 nm) of the ConA tether and comparing these results to the free-solution measurements, it has been possible to quantify the effect that protein immobilization has on binding. Our results indicate that the apparent binding affinity of the sugar-lectin pair increases as the distance between ConA and the surface decreases. These observations could lend insight as to why the affinity values reported in the literature sometimes vary significantly from one measurement technique to another.


Assuntos
Proteínas Imobilizadas/metabolismo , Técnicas Analíticas Microfluídicas/métodos , Soluções/metabolismo , Proteínas Imobilizadas/química , Ligação Proteica/fisiologia , Soluções/química , Propriedades de Superfície
15.
ACS Omega ; 7(36): 31916-31923, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36120008

RESUMO

CYFRA 21.1, a cytokeratin fragment of epithelial origin, has long been a valuable blood-based biomarker. As with most biomarkers, the clinical diagnostic value of CYFRA 21.1 is dependent on the quantitative performance of the assay. Looking toward translation, it is shown here that a free-solution assay (FSA) coupled with a compensated interferometric reader (CIR) can be used to provide excellent analytical performance in quantifying CYFRA 21.1 in patient serum samples. This report focuses on the analytical performance of the high-sensitivity (hs)-CYFRA 21.1 assay in the context of quantifying the biomarker in two indeterminate pulmonary nodule (IPN) patient cohorts totaling 179 patients. Each of the ten assay calibrations consisted of 6 concentrations, each run as 7 replicates (e.g., 10 × 6 × 7 data points) and were performed on two different instruments by two different operators. Coefficients of variation (CVs) for the hs-CYFRA 21.1 analytical figures of merit, limit of quantification (LOQ) of ca. 60 pg/mL, B max, initial slope, probe-target binding affinity, and reproducibility of quantifying an unknown were found to range from 2.5 to 8.3%. Our results demonstrate the excellent performance of our FSA-CIR hs-CYFRA 21-1 assay and a proof of concept for potentially redefining the performance characteristics of this existing important candidate biomarker.

16.
Electrophoresis ; 31(22): 3691-5, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20972990

RESUMO

Back-scattering interferometry (BSI) is a label-free, free-solution, small-volume technique used for characterizing binding interactions, which is also relevant to a growing number of biosensing applications including drug discovery. Here, we use BSI to characterize the interaction of carbonic anhydrase enzyme II with five well-known carbonic anhydrase enzyme II inhibitors (± sulpiride, sulfanilamide, benzene sulfonamide, dansylamide, and acetazolamide) in the presence of DMSO. Dissociation constants calculated for each interaction were consistent with literature values previously obtained using surface plasmon resonance and fluorescence-based competition assays. Results demonstrate the potential of BSI as a drug-screening tool which is fully compatible with DMSO and does not require immobilization or labeling, therefore allowing binding interactions to be characterized in the native state. BSI has the potential for reducing labor costs, sample consumption, and assay time while providing enhanced reliability over existing techniques.


Assuntos
Técnicas Biossensoriais/métodos , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/química , Interferometria/métodos , Acetazolamida/química , Acetazolamida/metabolismo , Anidrases Carbônicas/metabolismo , Compostos de Dansil/química , Compostos de Dansil/metabolismo , Dimetil Sulfóxido/química , Ligação Proteica , Espalhamento de Radiação , Sulfanilamidas/química , Sulfanilamidas/metabolismo
17.
Analyst ; 135(7): 1535-7, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20414494

RESUMO

Backscattering interferometry enables the detection of syphilis antibody-antigen interactions in the presence of human serum, showing promise as a diagnostic tool for the serological diagnosis of infectious disease with potentially quantitative capabilities.


Assuntos
Interferometria/métodos , Sorodiagnóstico da Sífilis/métodos , Sífilis/diagnóstico , Anticorpos/sangue , Anticorpos/imunologia , Antígenos/sangue , Antígenos/imunologia , Humanos , Imunoglobulina G/metabolismo , Luz , Sífilis/sangue
18.
ACS Omega ; 5(35): 22683, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32923829

RESUMO

[This corrects the article DOI: 10.1021/acsomega.9b04341.].

19.
ACS Omega ; 5(20): 11308-11313, 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32478218

RESUMO

Interferometric measurements of free solution assays (FSAs) quantify changes in molecular conformation and hydration upon binding. Here, we demonstrate that aptamer probes designed to undergo varying levels of conformational change upon binding produce corresponding variations in FSA signals. A series of hairpin aptamers were synthesized for the small molecule (tenofovir) with identical loop regions that contain the binding pocket, with between 2 and 10 self-associating base pairings in the stem region. Aptamers selected for tenofovir showed a decrease in the FSA signal and binding affinity (increase in K D) with increasing stem length. Thermodynamic calculations of the Gibbs free energy (ΔG) reported a decrease in ΔG with respect to a corresponding increase in the aptamer stem length. Collectively, these observations provide an expanded understanding of FSA and demonstrate the potential for the rational design of label-free aptamer beacons using FSA as readout.

20.
Anal Chem ; 81(12): 4889-97, 2009 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19462965

RESUMO

Carbohydrate-protein binding is important to many areas of biochemistry. Here, backscattering interferometry (BSI) has been shown to be a convenient and sensitive method for obtaining quantitative information about the strengths and selectivities of such interactions. The surfaces of glass microfluidic channels were covalently modified with extravidin, to which biotinylated lectins were subsequently attached by incubation and washing. The binding of unmodified carbohydrates to the resulting avidin-immobilized lectins was monitored by BSI. Dose-response curves that were generated within several minutes and were highly reproducible in multiple wash/measure cycles provided adsorption coefficients that showed mannose to bind to concanavalin A (conA) with 3.7 times greater affinity than glucose consistent with literature values. Galactose was observed to bind selectively and with similar affinity to the lectin BS-1. The avidities of polyvalent sugar-coated virus particles for immobilized conA were much higher than monovalent glycans, with increases of 60-200 fold per glycan when arrayed on the exterior surface of cowpea mosaic virus or bacteriophage Qbeta. Sugar-functionalized PAMAM dendrimers showed size-dependent adsorption, which was consistent with the expected density of lectins on the surface. The sensitivity of BSI matches or exceeds that of surface plasmon resonance and quartz crystal microbalance techniques, and is sensitive to the number of binding events, rather than changes in mass. The operational simplicity and generality of BSI, along with the near-native conditions under which the target binding proteins are immobilized, make BSI an attractive method for the quantitative characterization of the binding functions of lectins and other proteins.


Assuntos
Carboidratos/análise , Interferometria/métodos , Lectinas/química , Avidina/química , Biotina/química , Carboidratos/química , Concanavalina A/química , Lectinas/metabolismo , Metaboloma , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA