Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Molecules ; 27(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36500302

RESUMO

Plants are known to have numerous phytochemicals and other secondary metabolites with numerous pharmacological and biological properties. Among the various compounds, polyphenols, flavonoids, anthocyanins, alkaloids, and terpenoids are the predominant ones that have been explored for their biological potential. Among these, chalcones and bis-chalcones are less explored for their biological potential under in vitro experiments, cell culture models, and animal studies. In the present study, we evaluated six synthetic bis-chalcones that were different in terms of their aromatic cores, functional group substitution, and position of substitutions. The results indicated a strong antioxidant property in terms of DPPH and ABTS radical-scavenging potentials and ferric-reducing properties. In addition, compounds 1, 2, and 4 exhibited strong antibacterial activities against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Salmonella enteritidis. The disc diffusion assay values were indicative of the antibacterial properties of these compounds. Overall, the study indicated the antioxidant and antimicrobial properties of the compounds. Our preliminary studies point to the potential of this class of compounds for further in vivo investigation.


Assuntos
Anti-Infecciosos , Chalconas , Animais , Antioxidantes/farmacologia , Antioxidantes/química , Testes de Sensibilidade Microbiana , Chalconas/farmacologia , Antocianinas , Extratos Vegetais/química , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Escherichia coli
2.
Molecules ; 27(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36296712

RESUMO

Plants have been employed in therapeutic applications against various infectious and chronic diseases from ancient times. Various traditional medicines and folk systems have utilized numerous plants and plant products, which act as sources of drug candidates for modern medicine. Artemisia is a genus of the Asteraceae family with more than 500 species; however, many of these species are less explored for their biological efficacy, and several others are lacking scientific explanations for their uses. Artemisia nilagirica is a plant that is widely found in the Western Ghats, Kerala, India and is a prominent member of the genus. In the current study, the phytochemical composition and the antioxidant, enzyme-inhibitory, anti-inflammatory, and anticancer activities were examined. The results indicated that the ethanol extract of A. nilagirica indicated in vitro DPPH scavenging (23.12 ± 1.28 µg/mL), ABTS scavenging (27.44 ± 1.88 µg/mL), H2O2 scavenging (12.92 ± 1.05 µg/mL), and FRAP (5.42 ± 0.19 µg/mL). The anti-inflammatory effect was also noticed in the Raw 264.7 macrophages, where pretreatment with the extract reduced the LPS-stimulated production of cytokines (p < 0.05). A. nilagirica was also efficient in inhibiting the activities of α-amylase (38.42 ± 2.71 µg/mL), α-glucosidase (55.31 ± 2.16 µg/mL), aldose reductase (17.42 ± 0.87 µg/mL), and sorbitol dehydrogenase (29.57 ± 1.46 µg/mL). It also induced significant inhibition of proliferation in breast (MCF7 IC50 = 41.79 ± 1.07, MDAMB231 IC50 = 55.37 ± 2.11µg/mL) and colon (49.57 ± 1.46 µg/mL) cancer cells. The results of the phytochemical screening indicated a higher level of polyphenols and flavonoids in the extract and the LCMS analysis revealed the presence of various bioactive constituents including artemisinin.


Assuntos
Artemisia , Artemisininas , Aldeído Redutase , alfa-Amilases , alfa-Glucosidases , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Artemisia/química , Citocinas , Etanol , Flavonoides , Peróxido de Hidrogênio , L-Iditol 2-Desidrogenase , Lipopolissacarídeos , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química
3.
Molecules ; 26(21)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34771106

RESUMO

Essential oils are biologically and environmentally safe pesticidal compounds yielded from aromatic plants. Spices are important sources of essential oils, and they are widely used in the medicine, food, and various other industries. Among the different spices, Allspice (Pimenta dioica) is underexplored in terms of its biological efficacy and a limited number of studies are available on the chemical composition of Allspice essential oil (AEO); thus, the present study evaluated the larvicidal property, the repellency, and the fumigant toxicity against common pests of stored products of AEO. AEO was found to inhibit the survival of larvae of such vectors as Aedis, Culex, and Armigeres species. Further, AEO was found to exert repellant effects against the pests of such stored products as Sitophilus, Callosobruchus, and Tribolium. Similarly, the fumigant toxicity was found to be high for AEO against these species. The contact toxicity of AEO was high against Sitophilus and Callosobruchus. Apart from that, the essential oil was found to be safe against a non-target organism (guppy fishes) and was found to be non-genotoxic in an Allium cepa model. Overall, the results of the present study indicate that the essential oil from Allspice could be used as an environmentally safe larvicidal and biopesticidal compound.


Assuntos
Culicidae/efeitos dos fármacos , Inseticidas/química , Inseticidas/farmacologia , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Pimenta/química , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Animais , Relação Dose-Resposta a Droga , Concentração Inibidora 50 , Larva/efeitos dos fármacos , Dose Letal Mediana , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Folhas de Planta/química
4.
Antibiotics (Basel) ; 12(5)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37237843

RESUMO

Cinnamomum species are a group of plants belonging to the Lauraceae family. These plants are predominantly used as spices in various food preparations and other culinary purposes. Furthermore, these plants are attributed to having cosmetic and pharmacological potential. Cinnamomum malabatrum (Burm. f.) J. Presl is an underexplored plant in the Cinnamomum genus. The present study evaluated the chemical composition by a GC-MS analysis and antioxidant properties of the essential oil from C. malabatrum (CMEO). Further, the pharmacological effects were determined as radical quenching, enzyme inhibition and antibacterial activity. The results of the GC-MS analysis indicated the presence of 38.26 % of linalool and 12.43% of caryophyllene in the essential oil. Furthermore, the benzyl benzoate (9.60%), eugenol (8.75%), cinnamaldehyde (7.01%) and humulene (5.32%) were also present in the essential oil. The antioxidant activity was indicated by radical quenching properties, ferric-reducing potential and lipid peroxidation inhibition ex vivo. Further, the enzyme-inhibitory potential was confirmed against the enzymes involved in diabetes and diabetic complications. The results also indicated the antibacterial activity of these essential oils against different Gram-positive and Gram-negative bacteria. The disc diffusion method and minimum inhibitory concentration analysis revealed a higher antibacterial potential for C. malabatrum essential oil. Overall, the results identified the predominant chemical compounds of C. malabatrum essential oil and its biological and pharmacological effects.

5.
Antibiotics (Basel) ; 11(11)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36358202

RESUMO

Curcuma species are widely used as a food additive and also in various medicinal purposes. The plant is a rich source of essential oil and is predominantly extracted from the rhizomes. On the other hand, the leaves of the plants are usually considered as an agrowaste. The valorization of these Curcuma leaf wastes into essential oils is becoming accepted globally. In the present study, we aim to extract essential oils from the leaves of Curcuma longa (LEO), C. aromatica (REO), and C. anguistifolia (NEO). The chemical composition of these essential oils was analyzed by GC-MS. Free radical scavenging properties were evaluated against the radical sources, including DPPH, ABTS, and hydrogen peroxide. The antibacterial activity was assessed by the disc diffusion method and Minimum inhibitory concentration analysis against Gram positive (Staphylococcus aureus) and Gram negative (Escherichia coli, Pseudomonas aeruginosa and Salmonella enterica) bacteria. Results identified the compounds α-phellandrene, 2-carene, and eucalyptol as predominant in LEO. The REO was predominated by camphor, 2-bornanone, and curdione. The main components detected in NEO were eucalyptol, curzerenone, α-lemenone, longiverbenone, and α-curcumene. Antioxidant properties were higher in the LEO with IC50 values of 8.62 ± 0.18, 9.21 ± 0.29, and 4.35 ± 0.16 µg/mL, against DPPH, ABTS, and hydrogen peroxide radicals. The cytotoxic activity was also evident against breast cancer cell lines MCF-7 and MDA-MB-231 cells; the LEO was found to be the most active against these two cell lines (IC50 values of 40.74 ± 2.19 and 45.17 ± 2.36 µg/mL). Likewise, the results indicated a higher antibacterial activity for Curcuma longa essential oil with respective IC50 values (20.6 ± 0.3, 22.2 ± 0.3, 20.4 ± 0.2, and 17.6 ± 0.2 mm). Hence, the present study confirms the possible utility of leaf agrowastes of different Curcuma spp. as a possible source of essential oils with pharmacological potential.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA