Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 14296, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35995784

RESUMO

Honghua (Carthami flos) and Xihonghua (Croci stigma) have been used in anti-COVID-19 as Traditional Chinese Medicine, but the mechanism is unclear. In this study, we applied network pharmacology by analysis of active compounds and compound-targets networks, enzyme kinetics assay, signaling pathway analysis and investigated the potential mechanisms of anti-COVID-19. We found that both herbs act on signaling including kinases, response to inflammation and virus. Moreover, crocin likely has an antiviral effect due to its high affinity towards the human ACE2 receptor by simulation. The extract of Honghua and Xihonghua exhibited nanozyme/herbzyme activity of alkaline phosphatase, with distinct fluorescence. Thus, our data suggest the great potential of Honghua in the development of anti-COVID-19 agents.


Assuntos
Tratamento Farmacológico da COVID-19 , Carthamus tinctorius , Medicamentos de Ervas Chinesas , Medicamentos de Ervas Chinesas/análise , Medicamentos de Ervas Chinesas/farmacologia , Humanos , Medicina Tradicional Chinesa , Simulação de Acoplamento Molecular
2.
ACS Omega ; 7(17): 14465-14477, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35531567

RESUMO

A combination therapy of Rhizoma Polygonati (RP) with goji (Lycium chinense) has earned a long history in the prescriptions to promote male health. However, the mechanisms at both molecular and nanoscale quantum levels are unclear. Here, we found that processed RP extract induces apoptosis and cell cycle arrest in cancer cells, thereby inhibiting prostate cancer cell proliferation enhanced by processed goji extract associated with an augment of the nanoscale herbzyme of phosphatase. For network pharmacology analysis, RP-induced PI3K-AKT pathways are essential for both benign prostatic hyperplasia and prostate cancer, and the RP/goji combination induces potent pathways which include androgen and estrogen response, kinase regulation, apoptosis, and prostate cancer singling. In addition, the experimental investigation showed that the prostate cancer cells are sensitive to RP extract for inhibiting colony formation. Finally, the natural compound baicalein found in RP ingredients showed a linked activity of top-ranked signaling targets of kinases including MAPK, AKT, and EGFR by the database of cMAP and HERB. Thus, both the nanozyme and ingredients might contribute to the RP in anti-prostate cancer which can be enhanced by goji extract. The proposed nanoscale RP extract might be of significance in developing novel anti-prostate cancer agents by combining goji compositions and targeted therapy compounds.

3.
Nanoscale Adv ; 3(23): 6728-6738, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36132653

RESUMO

Nanozymes and natural product-derived herbzymes have been identified in different types of enzymes simulating the natural protein-based enzyme function. How to explore and predict enzyme types of novel nanozymes when synthesized remains elusive. An informed analysis might be useful for the prediction. Here, we applied a protein-evolution analysis method to predict novel types of enzymes with experimental validation. First, reported nanozymes were analyzed by chemical classification and nano-evolution. We found that nanozymes are predominantly classified as protein-based EC1 oxidoreductase. In comparison, we analyzed the evolution of protein-based natural enzymes by a phylogenetic tree and the most conserved enzymes were found to be peroxidase and lyase. Therefore, the natural products of Rhizoma polygonati and Goji herbs were analyzed to explore and test the potent new types of natural nanozymes/herbzymes using the simplicity simulation of natural protein enzyme evolution as they contain these conserved enzyme types. The experimental validation showed that the natural products from the total extract of nanoscale traditional Chinese medicine Huangjing (RP, Rhizoma polygonati) from Mount-Tai (Taishan) exhibit fructose-bisphosphate aldolase of lyase while nanoscale Goji (Lycium chinense) extract exhibits peroxidase activities. Thus, the bioinformatics analysis would provide an additional tool for the virtual discovery of natural product nanozymes.

4.
Drug Deliv ; 28(1): 2187-2197, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34662244

RESUMO

Rhizoma polygonati (Huangjing, RP) has been used for a long history with many chemical components in inducing anti-cancer, anti-aging, anti-diabetes, anti-fatigue, and more prevention of diseases or acts as nutrition sources in food. Here we investigated RP extract combination with kinase inhibitors in anti-cell growth and blockade in pathways targeting kinases. Experimental investigation and network pharmacology analysis were applied to test the potent kinase-mediated signaling. Herbzyme activity was determined by substrate with optical density measurement. Extract of processed RP inhibits cell growth in a much greater manner than alone when applied in combination with inhibitors of mTOR or EGFR. Moreover, processing methods of RP from Mount Tai (RP-Mount Tai) play essential roles in herbzyme activity of phosphatase suggesting the interface is also essential, in addition to the chemical component. The network pharmacology analysis showed the chemical component and target networks involving AKT and mTOR, which is consistent with experimental validation. Finally, EGFR inhibitor could be associated with nano-extract of RP-Mount Tai but not significantly affects the phosphatase herbzyme activity in vitro. Thus the processed extract of RP-Mount Tai may play a dual role in the inhibition of cell proliferation signaling by both chemical component and nanoscale herbzyme of phosphatase activity to inhibit kinases including mTOR/AKT in potent drug delivery of kinase inhibitors.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Farmacologia em Rede/métodos , Extratos Vegetais/farmacologia , Polygonatum , Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Mapas de Interação de Proteínas , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Serina-Treonina Quinases TOR/efeitos dos fármacos
5.
Nanoscale Adv ; 3(8): 2222-2235, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-36133773

RESUMO

Processed herbs have been widely used in eastern and western medicine; however, the mechanism of their medicinal effects has not yet been revealed. It is commonly believed that a central role is played by chemically active molecules produced by the herbs' metabolism. In this work, processed rhizoma polygonati (RP) and other herbal foods are shown to exhibit intrinsic phosphatase-like (PL) activity bounded with the formation of nano-size flower-shaped assembly. Via quantum mechanical calculations, an enzymatic mechanism is proposed. The enzymatic activity may be induced by the interaction between the sugar molecules distributed on the surface of the nanoassemblies and the phosphatase substrate via either a hydroxyl group or the deprotonated hydroxyl group. Meanwhile, the investigation was further extended by processing some fresh herbs and herbal food through a similar protocol, wherein other enzymatic activities (such as protease, and amylase) were observed. The PL activity exhibited by the processed natural herbs was found to be able to effectively inhibit cancer cell growth via phosphatase signaling, possibly by crosstalk with kinase signaling or DNA damage by either directly binding or unwinding of DNA, as evidenced by high-resolution atomic-force microscopy (HR-AFM). In this work, the neologism herbzyme (herb + enzyme) is proposed. This study represents the first case of scientific literature introducing this new term. Besides the well-known pharmacological properties of the natural molecules contained in herbs and herbal food, there exists an enzymatic/co-enzymatic activity attributed to the nanosized assemblies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA