RESUMO
Human mesenchymal stromal cells (MSC) are an important tool for basic and translational research. Large amounts of MSC are required for in vitro and in vivo studies, however, the limited life-span and differentiation ability in vitro hamper their optimal use. Here we report that 1:1 mixture of L15 and mTeSR1 culture media increased the life-span of IPI-SA3-C4, a normal non-immortalized human subcutaneous preadipocyte strain by 20% while retaining their adipogenic capacity and stable karyotype. The increased proliferative capacity was accompanied by increased expression of the stem markers POU5F1, SOX2, MYC and hTERT, and inhibition of hTERT activity abolished the growth advantage of L15-mTeSR1. Consequently, the described MSC culture would considerably enhance the utility of MSC for in vitro studies.
Assuntos
Adipócitos/citologia , Adipogenia , Proliferação de Células , Telomerase/metabolismo , Adipócitos/metabolismo , Técnicas de Cultura de Células , Linhagem Celular , Sobrevivência Celular , HumanosRESUMO
Phelan-McDermid syndrome, also known as the 22q13 deletion syndrome, is a chromosomal microdeletion syndrome characterized by neonatal hypotonia, normal growth, profound developmental delay, absent or delayed speech, and minor dysmorphic features. Almost all of the 22q13 deletions published so far have been described as terminal. It is believed that the SHANK3 gene is the major candidate gene for the neurologic features of the syndrome. Here we describe a patient with a 0.72-Mb interstitial 22q13.2 deletion, intellectual disability, autistic behavior, epilepsy, mild dysmorphic features, and no deletion in the SHANK3 gene. The patient also has urticarial rash and an elevated level of immunoglobulin E, the latter has previously been described only once in a patient with monosomy 22q13.2-qter and SHANK3 gene deletion. To our knowledge, this is one of the smallest interstitial deletion in this region which has been published up to now. Although the patient has the classic phenotype of the 22q13 terminal deletion syndrome, the etiology for the neurologic and immunological features must be due to genes located more proximal to SHANK3 and this is also supported by other previously published cases of interstitial 22q13.2 deletions. The deleted area in our patient is gene-rich (26 genes), containing several known genes with different functions. Two of them-NFAM1 and TNFRSF13C are involved in immune system functioning. We suggest the haploinsufficiency of these genes might be related to hyper IgE syndrome in our patient.
Assuntos
Deleção Cromossômica , Transtornos Cromossômicos/diagnóstico , Transtornos Cromossômicos/genética , Cromossomos Humanos Par 22 , Imunoglobulina E/sangue , Fenótipo , Encéfalo/patologia , Encéfalo/fisiopatologia , Criança , Cromossomos Humanos Par 22/genética , Hibridização Genômica Comparativa , Eletroencefalografia , Humanos , Imageamento por Ressonância Magnética , MasculinoRESUMO
Terminal duplications of 15q26.3 are associated with an overgrowth phenotype, distinct facial features and intellectual disability, with the smallest reported microduplication to date being 3.16 Mb in size. We report two familial 15q26.3 microduplication cases that are less than half this size, re-defining the minimal critical region for this duplication syndrome. In both families the duplication (albeit a complex copy number gain in one family) is associated with tall stature, early speech delay and variable cognitive problems. Neither familial copy number gains encompass the gene encoding for the insulin-like growth factor 1 receptor (IGF1R), the most-cited candidate for the overgrowth phenotype. In one family, whole genome sequence data and break point mapping excludes disruption of known IGF1R regulatory elements due to potential insertion within these elements. These cases highlight the possibility that the distal region of 15q contains another gene regulating human growth, with LRRK1 being a potential candidate.
Assuntos
Transtornos do Crescimento/genética , Deficiência Intelectual/genética , Receptor IGF Tipo 1/genética , Adulto , Cromossomos Humanos Par 15/genética , Feminino , Transtornos do Crescimento/fisiopatologia , Humanos , Hibridização in Situ Fluorescente , Deficiência Intelectual/fisiopatologia , Masculino , Pessoa de Meia-Idade , Linhagem , Proteínas Serina-Treonina Quinases/genéticaRESUMO
We present data from our clinical department's experience with chromosomal microarray analysis (CMA) regarding the diagnostic utility of 1 or 2 long contiguous stretches of homozygosity (LCSHs) in an outbred population. The study group consisted of 2,110 consecutive patients from 2011 to 2014 for whom CMA was performed. The minimum cut-off size for defining a homozygous stretch was 5 Mb. To focus on cases with no parental consanguinity, we further studied only patients in whom the total length of homozygous stretches did not exceed 28 Mb or 1% of the autosomal genome length. We identified 6 chromosomal regions where homozygous stretches appeared in at least 3 patients and excluded these from further analysis. In 2 out of 120 patients with an isolated finding of 1 or 2 non-recurrent LCSHs, a plausible candidate gene associated with their phenotype was identified within the homozygous stretch. In both of these cases, a pathogenic mutation was detected, leading to diagnoses of pyruvate kinase deficiency and Marinesco-Sjögren syndrome. To clarify whether previously found homozygous stretches could be important for the interpretation of genome-wide sequencing data, we report 7 cases in which homozygous stretches not encompassing a clinically associated gene were first found on CMA, followed by the diagnostic whole-exome sequencing. The diagnostic utility of single LCSHs, unlikely to be caused by uniparental disomy, is discussed in detail.
RESUMO
Chromosomal microarray analysis (CMA) is now established as the first-tier cytogenetic diagnostic test for fast and accurate detection of chromosomal abnormalities in patients with developmental delay/intellectual disability (DD/ID), multiple congenital anomalies (MCA), and autism spectrum disorders (ASD). We present our experience with using CMA for postnatal and prenatal diagnosis in Estonian patients during 2009-2012. Since 2011, CMA is on the official service list of the Estonian Health Insurance Fund and is performed as the first-tier cytogenetic test for patients with DD/ID, MCA or ASD. A total of 1191 patients were analyzed, including postnatal (1072 [90%] patients and 59 [5%] family members) and prenatal referrals (60 [5%] fetuses). Abnormal results were reported in 298 (25%) patients, with a total of 351 findings (1-3 per individual): 147 (42%) deletions, 106 (30%) duplications, 89 (25%) long contiguous stretches of homozygosity (LCSH) events (>5 Mb), and nine (3%) aneuploidies. Of all findings, 143 (41%) were defined as pathogenic or likely pathogenic; for another 143 findings (41%), most of which were LCSH, the clinical significance remained unknown, while 61 (18%) reported findings can now be reclassified as benign or likely benign. Clinically relevant findings were detected in 126 (11%) patients. However, the proportion of variants of unknown clinical significance was quite high (41% of all findings). It seems that our ability to detect chromosomal abnormalities has far outpaced our ability to understand their role in disease. Thus, the interpretation of CMA findings remains a rather difficult task requiring a close collaboration between clinicians and cytogeneticists.
RESUMO
Only eight cases involving deletions of chromosome 17 in the region q22-q24 have been reported previously. We describe an additional case, a 7-year-old boy with profound mental retardation, severe microcephaly, facial dysmorphism, symphalangism, contractures of large joints, hyperopia, strabismus, bilateral conductive hearing loss, genital abnormality, psoriasis vulgaris and tracheo-esophageal fistula. Analysis with whole-genome SNP genotyping assay detected a 5.9 Mb deletion in chromosome band 17q22-q23.2 with breakpoints between 48,200,000-48,300,000 bp and 54,200,000-54,300,000 bp (according to NCBI 36). The aberration was confirmed by real-time quantitative PCR analysis. Haploinsufficiency of NOG gene has been implicated in the development of conductive hearing loss, skeletal anomalies including symphalangism, contractures of joints, and hyperopia in our patient and may also contribute to the development of tracheo-esophageal fistula and/or esophageal atresia.