Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Genome Res ; 27(8): 1384-1394, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28522611

RESUMO

Retrotransposons are "copy-and-paste" insertional mutagens that substantially contribute to mammalian genome content. Retrotransposons often carry long terminal repeats (LTRs) for retrovirus-like reverse transcription and integration into the genome. We report an extraordinary impact of a group of LTRs from the mammalian endogenous retrovirus-related ERVL retrotransposon class on gene expression in the germline and beyond. In mouse, we identified more than 800 LTRs from ORR1, MT, MT2, and MLT families, which resemble mobile gene-remodeling platforms that supply promoters and first exons. The LTR-mediated gene remodeling also extends to hamster, human, and bovine oocytes. The LTRs function in a stage-specific manner during the oocyte-to-embryo transition by activating transcription, altering protein-coding sequences, producing noncoding RNAs, and even supporting evolution of new protein-coding genes. These functions result, for example, in recycling processed pseudogenes into mRNAs or lncRNAs with regulatory roles. The functional potential of the studied LTRs is even higher, because we show that dormant LTR promoter activity can rescue loss of an essential upstream promoter. We also report a novel protein-coding gene evolution-D6Ertd527e-in which an MT LTR provided a promoter and the 5' exon with a functional start codon while the bulk of the protein-coding sequence evolved through a CAG repeat expansion. Altogether, ERVL LTRs provide molecular mechanisms for stochastically scanning, rewiring, and recycling genetic information on an extraordinary scale. ERVL LTRs thus offer means for a comprehensive survey of the genome's expression potential, tightly intertwining with gene expression and evolution in the germline.


Assuntos
Evolução Molecular , Regulação da Expressão Gênica , Oócitos/metabolismo , Retroelementos , Sequências Repetidas Terminais , Zigoto/metabolismo , Animais , Bovinos , Cricetinae , Retrovirus Endógenos , Humanos , Camundongos , Oócitos/citologia , Regiões Promotoras Genéticas , Transcrição Gênica , Zigoto/citologia
2.
Eur Urol ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38811314

RESUMO

BACKGROUND AND OBJECTIVE: Circulating tumor DNA (ctDNA) can be used for sensitive detection of minimal residual disease (MRD). However, the probability of detecting ctDNA in settings of low tumor burden is limited by the number of mutations analyzed and the plasma volume available. We used a whole-genome sequencing (WGS) approach for ctDNA detection in patients with urothelial carcinoma. METHODS: We used a tumor-informed WGS approach for ctDNA-based detection of MRD and evaluation of treatment responses. We analyzed 916 longitudinally collected plasma samples from 112 patients with localized muscle-invasive bladder cancer who received neoadjuvant chemotherapy (NAC) before radical cystectomy. Recurrence-free survival (primary endpoint), overall survival, and ctDNA dynamics during NAC were assessed. KEY FINDINGS AND LIMITATIONS: We found that WGS-based ctDNA detection is prognostic for patient outcomes with a median lead time of 131 d over radiographic imaging. WGS-based ctDNA assessment after radical cystectomy identified recurrence with sensitivity of 91% and specificity of 92%. In addition, genomic characterization of post-treatment plasma samples with a high ctDNA level revealed acquisition of platinum therapy-associated mutational signatures and copy number variations not present in the primary tumors. The sequencing depth is a limitation for studying tumor evolution. CONCLUSIONS AND CLINICAL IMPLICATIONS: Our results support the use of WGS for ultrasensitive ctDNA detection and highlight the possibility of plasma-based tracking of tumor evolution. WGS-based ctDNA detection represents a promising option for clinical use owing to the low volume of plasma needed and the ease of performing WGS, eliminating the need for personalized assay design. PATIENT SUMMARY: Detection of tumor DNA in blood samples from patients with cancer of the urinary tract is associated with poorer outcomes. Disease recurrence after surgery can be identified by the presence of tumor DNA in blood before it can be detected on radiography scans.

3.
Nat Commun ; 10(1): 4059, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31492853

RESUMO

HIV-1 recurrently targets active genes and integrates in the proximity of the nuclear pore compartment in CD4+ T cells. However, the genomic features of these genes and the relevance of their transcriptional activity for HIV-1 integration have so far remained unclear. Here we show that recurrently targeted genes are proximal to super-enhancer genomic elements and that they cluster in specific spatial compartments of the T cell nucleus. We further show that these gene clusters acquire their location during the activation of T cells. The clustering of these genes along with their transcriptional activity are the major determinants of HIV-1 integration in T cells. Our results provide evidence of the relevance of the spatial compartmentalization of the genome for HIV-1 integration, thus further strengthening the role of nuclear architecture in viral infection.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Núcleo Celular/genética , Elementos Facilitadores Genéticos , HIV-1/genética , Integração Viral/genética , Sequência de Bases , Linfócitos T CD4-Positivos/virologia , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Cromatina/genética , Cromatina/virologia , Infecções por HIV/genética , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/fisiologia , Humanos , Poro Nuclear/genética , Poro Nuclear/virologia , Regiões Promotoras Genéticas/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA