Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Virol ; 96(7): e0005722, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35319225

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused over 5 million deaths worldwide. Pneumonia and systemic inflammation contribute to its high mortality. Many viruses use heparan sulfate proteoglycans as coreceptors for viral entry, and heparanase (HPSE) is a known regulator of both viral entry and inflammatory cytokines. We evaluated the heparanase inhibitor Roneparstat, a modified heparin with minimum anticoagulant activity, in pathophysiology and therapy for COVID-19. We found that Roneparstat significantly decreased the infectivity of SARS-CoV-2, SARS-CoV-1, and retroviruses (human T-lymphotropic virus 1 [HTLV-1] and HIV-1) in vitro. Single-cell RNA sequencing (scRNA-seq) analysis of cells from the bronchoalveolar lavage fluid of COVID-19 patients revealed a marked increase in HPSE gene expression in CD68+ macrophages compared to healthy controls. Elevated levels of HPSE expression in macrophages correlated with the severity of COVID-19 and the expression of inflammatory cytokine genes, including IL6, TNF, IL1B, and CCL2. In line with this finding, we found a marked induction of HPSE and numerous inflammatory cytokines in human macrophages challenged with SARS-CoV-2 S1 protein. Treatment with Roneparstat significantly attenuated SARS-CoV-2 S1 protein-mediated inflammatory cytokine release from human macrophages, through disruption of NF-κB signaling. HPSE knockdown in a macrophage cell line also showed diminished inflammatory cytokine production during S1 protein challenge. Taken together, this study provides a proof of concept that heparanase is a target for SARS-CoV-2-mediated pathogenesis and that Roneparstat may serve as a dual-targeted therapy to reduce viral infection and inflammation in COVID-19. IMPORTANCE The complex pathogenesis of COVID-19 consists of two major pathological phases: an initial infection phase elicited by SARS-CoV-2 entry and replication and an inflammation phase that could lead to tissue damage, which can evolve into acute respiratory failure or even death. While the development and deployment of vaccines are ongoing, effective therapy for COVID-19 is still urgently needed. In this study, we explored HPSE blockade with Roneparstat, a phase I clinically tested HPSE inhibitor, in the context of COVID-19 pathogenesis. Treatment with Roneparstat showed wide-spectrum anti-infection activities against SARS-CoV-2, HTLV-1, and HIV-1 in vitro. In addition, HPSE blockade with Roneparstat significantly attenuated SARS-CoV-2 S1 protein-induced inflammatory cytokine release from human macrophages through disruption of NF-κB signaling. Together, this study provides a proof of principle for the use of Roneparstat as a dual-targeting therapy for COVID-19 to decrease viral infection and dampen the proinflammatory immune response mediated by macrophages.


Assuntos
Tratamento Farmacológico da COVID-19 , Heparina/análogos & derivados , Linhagem Celular , Citocinas/metabolismo , Fenofibrato , Técnicas de Silenciamento de Genes , Glucuronidase/genética , Glucuronidase/metabolismo , Heparina/uso terapêutico , Humanos , Imunidade/efeitos dos fármacos , Inflamação , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , NF-kappa B , SARS-CoV-2
2.
Int J Mol Sci ; 21(18)2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32967150

RESUMO

Patients with advanced skeletal metastases arising from primary cancers including breast, lung, and prostate suffer from extreme pain, bone loss, and frequent fractures. While the importance of interactions between bone and tumors is well-established, our understanding of complex cell-cell and cell-microenvironment interactions remains limited in part due to a lack of appropriate 3D bone models. To improve our understanding of the influence of bone morphometric properties on the regulation of tumor-induced bone disease (TIBD), we utilized bone-like 3D scaffolds in vitro and in vivo. Scaffolds were seeded with tumor cells, and changes in cell motility, proliferation, and gene expression were measured. Genes associated with TIBD significantly increased with increasing scaffold rigidity. Drug response differed when tumors were cultured in 3D compared to 2D. Inhibitors for Integrin ß3 and TGF-ß Receptor II significantly reduced bone-metastatic gene expression in 2D but not 3D, while treatment with the Gli antagonist GANT58 significantly reduced gene expression in both 2D and 3D. When tumor-seeded 3D scaffolds were implanted into mice, infiltration of myeloid progenitors changed in response to pore size and rigidity. This study demonstrates a versatile 3D model of bone used to study the influence of mechanical and morphometric properties of bone on TIBD.


Assuntos
Neoplasias Ósseas , Movimento Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Modelos Biológicos , Proteínas de Neoplasias/biossíntese , Piridinas/farmacologia , Tiofenos/farmacologia , Alicerces Teciduais/química , Animais , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Nus , Metástase Neoplásica
3.
Curr Osteoporos Rep ; 15(4): 247-254, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28646444

RESUMO

PURPOSE OF REVIEW: Bone is a structurally unique microenvironment that presents many challenges for the development of 3D models for studying bone physiology and diseases, including cancer. As researchers continue to investigate the interactions within the bone microenvironment, the development of 3D models of bone has become critical. RECENT FINDINGS: 3D models have been developed that replicate some properties of bone, but have not fully reproduced the complex structural and cellular composition of the bone microenvironment. This review will discuss 3D models including polyurethane, silk, and collagen scaffolds that have been developed to study tumor-induced bone disease. In addition, we discuss 3D printing techniques used to better replicate the structure of bone. 3D models that better replicate the bone microenvironment will help researchers better understand the dynamic interactions between tumors and the bone microenvironment, ultimately leading to better models for testing therapeutics and predicting patient outcomes.


Assuntos
Neoplasias Ósseas , Osso e Ossos , Modelos Biológicos , Microambiente Tumoral , Colágeno , Humanos , Poliuretanos , Impressão Tridimensional , Seda , Engenharia Tecidual , Alicerces Teciduais
4.
Brain Behav Immun ; 41: 218-31, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24907587

RESUMO

Anxiety is one of the most commonly reported psychiatric conditions, but its pathogenesis is poorly understood. Ailments associated with activation of the innate immune system, however, are increasingly linked to anxiety disorders. In adult male mice, we found that adenosine doubled caspase-1 activity in brain by a pathway reliant on ATP-sensitive potassium (KATP) channels, protein kinase A (PKA) and the A2A adenosine receptor (AR). In addition, adenosine-dependent activation of caspase-1 increased interleukin (IL)-1ß in the brain by 2-fold. Peripheral administration of adenosine in wild-type (WT) mice led to a 2.3-fold increase in caspase-1 activity in the amygdala and to a 33% and 42% reduction in spontaneous locomotor activity and food intake, respectively, that were not observed in caspase-1 knockout (KO), IL-1 receptor type 1 (IL-1R1) KO and A2A AR KO mice or in mice administered a caspase-1 inhibitor centrally. Finally, adenosine administration increased anxiety-like behaviors in WT mice by 28% in the open field test and by 55% in the elevated zero-maze. Caspase-1 KO mice, IL-1R1 KO mice, A2A AR KO mice and WT mice treated with the KATP channel blocker, glyburide, were resistant to adenosine-induced anxiety-like behaviors. Thus, our results indicate that adenosine can act as an anxiogenic by activating caspase-1 and increasing IL-1ß in the brain.


Assuntos
Adenosina/toxicidade , Ansiedade/induzido quimicamente , Encéfalo/metabolismo , Caspase 1/fisiologia , Interleucina-1beta/biossíntese , Proteínas do Tecido Nervoso/fisiologia , Receptor A2A de Adenosina/fisiologia , Adenosina/farmacologia , Tonsila do Cerebelo/metabolismo , Animais , Ansiedade/fisiopatologia , Carbazóis/farmacologia , Caspase 1/deficiência , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Ativação Enzimática/efeitos dos fármacos , Comportamento Exploratório/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Glibureto/farmacologia , Interleucina-1beta/genética , Interleucina-1beta/fisiologia , Transporte de Íons/efeitos dos fármacos , Canais KATP/fisiologia , Locomoção/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/deficiência , Potássio/metabolismo , Pirróis/farmacologia , Receptor A2A de Adenosina/deficiência , Receptor A2A de Adenosina/efeitos dos fármacos , Receptores Tipo I de Interleucina-1/deficiência , Receptores Tipo I de Interleucina-1/fisiologia
5.
PLoS One ; 18(12): e0293700, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38117806

RESUMO

BACKGROUND: Conjugation of transferrin (Tf) to imaging or nanotherapeutic agents is a promising strategy to target breast cancer. Since the efficacy of these biomaterials often depends on the overexpression of the targeted receptor, we set out to survey expression of transferrin receptor (TfR) in primary and metastatic breast cancer samples, including metastases and relapse, and investigate its modulation in experimental models. METHODS: Gene expression was investigated by datamining in twelve publicly-available datasets. Dedicated Tissue microarrays (TMAs) were generated to evaluate matched primary and bone metastases as well as and pre and post chemotherapy tumors from the same patient. TMA were stained with the FDA-approved MRQ-48 antibody against TfR and graded by staining intensity (H-score). Patient-derived xenografts (PDX) and isogenic metastatic mouse models were used to study in vivo TfR expression and uptake of transferrin. RESULTS: TFRC gene and protein expression were high in breast cancer of all subtypes and stages, and in 60-85% of bone metastases. TfR was detectable after neoadjuvant chemotherapy, albeit with some variability. Fluorophore-conjugated transferrin iron chelator deferoxamine (DFO) enhanced TfR uptake in human breast cancer cells in vitro and proved transferrin localization at metastatic sites and correlation of tumor burden relative to untreated tumor mice. CONCLUSIONS: TfR is expressed in breast cancer, primary, metastatic, and after neoadjuvant chemotherapy. Variability in expression of TfR suggests that evaluation of the expression of TfR in individual patients could identify the best candidates for targeting. Further, systemic iron chelation with DFO may upregulate receptor expression and improve uptake of therapeutics or tracers that use transferrin as a homing ligand.


Assuntos
Neoplasias da Mama , Animais , Feminino , Humanos , Camundongos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Quelantes , Expressão Gênica , Terapia de Alvo Molecular , Receptores da Transferrina/metabolismo , Transferrina/metabolismo
6.
Mol Cancer Ther ; 20(6): 1183-1198, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33785647

RESUMO

Breast cancer bone metastases are common and incurable. Tumoral integrin ß3 (ß3) expression is induced through interaction with the bone microenvironment. Although ß3 is known to promote bone colonization, its functional role during therapy of established bone metastases is not known. We found increased numbers of ß3+ tumor cells in murine bone metastases after docetaxel chemotherapy. ß3+ tumor cells were present in 97% of post-neoadjuvant chemotherapy triple-negative breast cancer patient samples (n = 38). High tumoral ß3 expression was associated with worse outcomes in both pre- and postchemotherapy triple-negative breast cancer groups. Genetic deletion of tumoral ß3 had minimal effect in vitro, but significantly enhanced in vivo docetaxel activity, particularly in the bone. Rescue experiments confirmed that this effect required intact ß3 signaling. Ultrastructural, transcriptomic, and functional analyses revealed an alternative metabolic response to chemotherapy in ß3-expressing cells characterized by enhanced oxygen consumption, reactive oxygen species generation, and protein production. We identified mTORC1 as a candidate for therapeutic targeting of this ß3-mediated, chemotherapy-induced metabolic response. mTORC1 inhibition in combination with docetaxel synergistically attenuated murine bone metastases. Furthermore, micelle nanoparticle delivery of mTORC1 inhibitor to cells expressing activated αvß3 integrins enhanced docetaxel efficacy in bone metastases. Taken together, we show that ß3 integrin induction by the bone microenvironment promotes resistance to chemotherapy through an altered metabolic response that can be defused by combination with αvß3-targeted mTORC1 inhibitor nanotherapy. Our work demonstrates the importance of the metastatic microenvironment when designing treatments and presents new, bone-specific strategies for enhancing chemotherapeutic efficacy.


Assuntos
Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/secundário , Neoplasias da Mama/tratamento farmacológico , Integrina beta3/metabolismo , Animais , Antineoplásicos/farmacologia , Neoplasias Ósseas/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Docetaxel/farmacologia , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Terapia de Alvo Molecular , Análise de Sobrevida
7.
J Clin Invest ; 131(20)2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34520398

RESUMO

Tumor-infiltrating myeloid cells contribute to the development of the immunosuppressive tumor microenvironment. Myeloid cell expression of arginase 1 (ARG1) promotes a protumor phenotype by inhibiting T cell function and depleting extracellular l-arginine, but the mechanism underlying this expression, especially in breast cancer, is poorly understood. In breast cancer clinical samples and in our mouse models, we identified tumor-derived GM-CSF as the primary regulator of myeloid cell ARG1 expression and local immune suppression through a gene-KO screen of breast tumor cell-produced factors. The induction of myeloid cell ARG1 required GM-CSF and a low pH environment. GM-CSF signaling through STAT3 and p38 MAPK and acid signaling through cAMP were required to activate myeloid cell ARG1 expression in a STAT6-independent manner. Importantly, breast tumor cell-derived GM-CSF promoted tumor progression by inhibiting host antitumor immunity, driving a significant accumulation of ARG1-expressing myeloid cells compared with lung and melanoma tumors with minimal GM-CSF expression. Blockade of tumoral GM-CSF enhanced the efficacy of tumor-specific adoptive T cell therapy and immune checkpoint blockade. Taken together, we show that breast tumor cell-derived GM-CSF contributes to the development of the immunosuppressive breast cancer microenvironment by regulating myeloid cell ARG1 expression and can be targeted to enhance breast cancer immunotherapy.


Assuntos
Arginase/fisiologia , Neoplasias da Mama/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/fisiologia , Tolerância Imunológica , Células Mieloides/enzimologia , Microambiente Tumoral , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , AMP Cíclico/fisiologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL
8.
ACS Nano ; 14(1): 311-327, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31894963

RESUMO

Breast cancer patients are at high risk for bone metastasis. Metastatic bone disease is a major clinical problem that leads to a reduction in mobility, increased risk of pathologic fracture, severe bone pain, and other skeletal-related events. The transcription factor Gli2 drives expression of parathyroid hormone-related protein (PTHrP), which activates osteoclast-mediated bone destruction, and previous studies showed that Gli2 genetic repression in bone-metastatic tumor cells significantly reduces tumor-induced bone destruction. Small molecule inhibitors of Gli2 have been identified; however, the lipophilicity and poor pharmacokinetic profile of these compounds have precluded their success in vivo. In this study, we designed a bone-targeted nanoparticle (BTNP) comprising an amphiphilic diblock copolymer of poly[(propylene sulfide)-block-(alendronate acrylamide-co-N,N-dimethylacrylamide)] [PPS-b-P(Aln-co-DMA)] to encapsulate and preferentially deliver a small molecule Gli2 inhibitor, GANT58, to bone-associated tumors. The mol % of the bisphosphonate Aln in the hydrophilic polymer block was varied in order to optimize BTNP targeting to tumor-associated bone by a combination of nonspecific tumor accumulation (presumably through the enhanced permeation and retention effect) and active bone binding. Although 100% functionalization with Aln created BTNPs with strong bone binding, these BTNPs had highly negative zeta-potential, resulting in shorter circulation time, greater liver uptake, and less distribution to metastatic tumors in bone. However, 10 mol % of Aln in the hydrophilic block generated a formulation with a favorable balance of systemic pharmacokinetics and bone binding, providing the highest bone/liver biodistribution ratio among formulations tested. In an intracardiac tumor cell injection model of breast cancer bone metastasis, treatment with the lead candidate GANT58-BTNP formulation decreased tumor-associated bone lesion area 3-fold and increased bone volume fraction in the tibiae of the mice 2.5-fold. Aln conferred bone targeting to the GANT58-BTNPs, which increased GANT58 concentration in the tumor-associated bone relative to untargeted NPs, and also provided benefit through the direct antiresorptive therapeutic function of Aln. The dual benefit of the Aln in the BTNPs was supported by the observations that drug-free Aln-containing BTNPs improved bone volume fraction in bone-tumor-bearing mice, while GANT58-BTNPs created better therapeutic outcomes than both unloaded BTNPs and GANT58-loaded untargeted NPs. These findings suggest GANT58-BTNPs have potential to potently inhibit tumor-driven osteoclast activation and resultant bone destruction in patients with bone-associated tumor metastases.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Nanopartículas/química , Polímeros/farmacologia , Piridinas/farmacologia , Tiofenos/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/secundário , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Imagem Óptica , Tamanho da Partícula , Polímeros/síntese química , Polímeros/química , Piridinas/química , Propriedades de Superfície , Tiofenos/química , Microtomografia por Raio-X
9.
J Control Release ; 311-312: 257-272, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31494183

RESUMO

Solid tumors frequently metastasize to bone and induce bone destruction leading to severe pain, fractures, and other skeletal-related events (SREs). Osteoclast inhibitors such as bisphosphonates delay SREs but do not prevent skeletal complications or improve overall survival. Because bisphosphonates can cause adverse side effects and are contraindicated for some patients, we sought an alternative therapy to reduce tumor-associated bone destruction. Our previous studies identified the transcription factor Gli2 as a key regulator of parathyroid hormone-related protein (PTHrP), which is produced by bone metastatic tumor cells to promote osteoclast-mediated bone destruction. In this study, we tested the treatment effect of a Gli antagonist GANT58, which inhibits Gli2 nuclear translocation and PTHrP expression in tumor cells. In initial testing, GANT58 did not have efficacy in vivo due to its low water solubility and poor bioavailability. We therefore developed a micellar nanoparticle (NP) to encapsulate and colloidally stabilize GANT58, providing a fully aqueous, intravenously injectable formulation based on the polymer poly(propylene sulfide)135-b-poly[(oligoethylene glycol)9 methyl ether acrylate]17 (PPS135-b-POEGA17). POEGA forms the hydrophilic NP surface while PPS forms the hydrophobic NP core that sequesters GANT58. In response to reactive oxygen species (ROS), PPS becomes hydrophilic and degrades to enable drug release. In an intratibial model of breast cancer bone metastasis, treatment with GANT58-NPs decreased bone lesion area by 49% (p<.01) and lesion number by 38% (p<.05) and resulted in a 2.5-fold increase in trabecular bone volume (p<.001). Similar results were observed in intracardiac and intratibial models of breast and lung cancer bone metastasis, respectively. Importantly, GANT58-NPs reduced tumor cell proliferation but did not alter mesenchymal stem cell proliferation or osteoblast mineralization in vitro, nor was there evidence of cytotoxicity after repeated in vivo treatment. Thus, inhibition of Gli2 using GANT58-NPs is a potential therapy to reduce bone destruction that should be considered for further testing and development toward clinical translation.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Ósseas/tratamento farmacológico , Portadores de Fármacos/administração & dosagem , Neoplasias Mamárias Animais/tratamento farmacológico , Nanopartículas/administração & dosagem , Piridinas/administração & dosagem , Tiofenos/administração & dosagem , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Apoptose/efeitos dos fármacos , Neoplasias Ósseas/secundário , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Liberação Controlada de Fármacos , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Mamárias Animais/patologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Nus , Nanopartículas/química , Osteogênese/efeitos dos fármacos , Polímeros/administração & dosagem , Polímeros/química , Polímeros/farmacocinética , Piridinas/química , Piridinas/farmacocinética , Tiofenos/química , Tiofenos/farmacocinética , Proteína Gli2 com Dedos de Zinco/antagonistas & inibidores , Proteína Gli2 com Dedos de Zinco/genética
10.
Bone ; 113: 77-88, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29753718

RESUMO

The tumor-cell microenvironment is recognized as a dynamic place where critical cell interactions occur and play an important role in altering tumorigenesis. While many studies have investigated the effects of cellular cross-talk within distinct tumor microenvironments, these interactions have yet to be fully examined in bone. It is well-established that many common cancers metastasize to bone, resulting in the development of tumor-induced bone disease (TIBD), a multi-facetted illness that is driven by complex cell interactions within the bone marrow. Our group has previously published that myeloid progenitor cells expand in the presence of tumors in bone, aligning with the notion that myeloid cells can act as tumor promotors. Several groups, including ours, have established that transforming growth factor ß (TGF-ß), an abundant growth factor in bone, can regulate both TIBD and myeloid expansion. TGF-ß inhibitors have been shown to increase bone volume, decrease bone destruction, and reduce but not eliminate tumor. Therefore, we hypothesize that inhibiting TGF-ß will reduce myeloid expansion leading to a reduction of tumor burden in bone and osteoclast-mediated bone loss, causing to an overall reduction in TIBD. To address this hypothesis, two different mouse models of breast cancer bone colonization were pre-treated with the TGF-ß neutralizing antibody, 1D11, prior to tumor inoculation (athymic: MDA-MB-231, BALB/c: 4T1) and continuously treated until sacrifice. Additionally, a genetically modified mouse model with a myeloid specific deletion of transforming growth factor beta receptor II (TGF-ßRII) (TGF-ßRIIMyeKO) was utilized in our studies. Systemic inhibition of TGF-ß lead to fewer osteolytic lesions, and reduced tumor burden in bone as expected from previous studies. Additionally, early TGF-ß inhibition affected expansion of distinct myeloid populations and shifted the cytokine profile of pro-tumorigenic factors in bone, 4T1 tumor cells, and bone-marrow derived macrophages. Similar observations were seen in tumor-bearing TGF-ßRIIMyeKO mice, where these mice contained fewer bone lesions and significantly less tumor burden in bone, suggesting that TGF-ß inhibition regulates myeloid expansion leading to a significant reduction in TIBD.


Assuntos
Neoplasias Ósseas/secundário , Neoplasias Mamárias Experimentais/secundário , Células Progenitoras Mieloides/patologia , Fator de Crescimento Transformador beta/antagonistas & inibidores , Microambiente Tumoral/fisiologia , Animais , Feminino , Humanos , Camundongos , Camundongos Knockout
11.
Cancers (Basel) ; 9(7)2017 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-28698458

RESUMO

Tumor-induced bone disease is common among patients with advanced solid cancers, especially those with breast, prostate, and lung malignancies. The tendency of these cancers to metastasize to bone and induce bone destruction is, in part, due to alterations in integrin expression and signaling. Substantial evidence from preclinical studies shows that increased expression of integrin αvß3 in tumor cells promotes the metastatic and bone-invasive phenotype. Integrin αvß3 mediates cell adhesion to several extracellular matrix proteins in the bone microenvironment which is necessary for tumor cell colonization as well as the transmission of mechanical signals for tumor progression. This review will discuss the αvß3 integrin receptor in the context of tumor-induced bone disease. Specifically, the focus will be the role of αvß3 in modulating cancer metastasis to bone and tumor cell response to the bone microenvironment, including downstream signaling pathways that contribute to tumor-induced osteolysis. A better understanding of integrin dysregulation in cancer is critical to developing new therapeutics for the prevention and treatment of bone metastases.

12.
Front Behav Neurosci ; 10: 156, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27563288

RESUMO

Obesity-associated comorbidities such as cognitive impairment and anxiety are increasing public health burdens that have gained prevalence in children. To better understand the impact of childhood obesity on brain function, mice were fed with a high-fat diet (HFD) from weaning for 1, 3 or 6 weeks. When compared to low-fat diet (LFD)-fed mice (LFD-mice), HFD-fed mice (HFD-mice) had impaired novel object recognition (NOR) after 1 week. After 3 weeks, HFD-mice had impaired NOR and object location recognition (OLR). Additionally, these mice displayed anxiety-like behavior by measure of both the open-field and elevated zero maze (EZM) testing. At 6 weeks, HFD-mice were comparable to LFD-mice in NOR, open-field and EZM performance but they remained impaired during OLR testing. Glyburide, a second-generation sulfonylurea for the treatment of type 2 diabetes, was chosen as a countermeasure based on previous data exhibiting its potential as an anxiolytic. Interestingly, a single dose of glyburide corrected deficiencies in NOR and mitigated anxiety-like behaviors in mice fed with HFD-diet for 3-weeks. Taken together these results indicate that a HFD negatively impacts a subset of hippocampal-independent behaviors relatively rapidly, but such behaviors normalize with age. In contrast, impairment of hippocampal-sensitive memory takes longer to develop but persists. Since single-dose glyburide restores brain function in 3-week-old HFD-mice, drugs that block ATP-sensitive K(+) (KATP) channels may be of clinical relevance in the treatment of obesity-associated childhood cognitive issues and psychopathologies.

13.
Metabolism ; 63(9): 1131-40, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25016520

RESUMO

OBJECTIVES: Excess fat in the diet can impact neuropsychiatric functions by negatively affecting cognition, mood and anxiety. We sought to show that the free fatty acid (FFA), palmitic acid, can cause adverse biobehaviors in mice that last beyond an acute elevation in plasma FFAs. METHODS: Mice were administered palmitic acid or vehicle as a single intraperitoneal (IP) injection. Biobehaviors were profiled 2 and 24 h after palmitic acid treatment. Quantification of dopamine (DA), norepinephrine (NE), serotonin (5-HT) and their major metabolites was performed in cortex, hippocampus and amygdala. FFA concentration was determined in plasma. Relative fold change in mRNA expression of unfolded protein response (UPR)-associated genes was determined in brain regions. RESULTS: In a dose-dependent fashion, palmitic acid rapidly reduced mouse locomotor activity by a mechanism that did not rely on TLR4, MyD88, IL-1, IL-6 or TNFα but was dependent on fatty acid chain length. Twenty-four hours after palmitic acid administration mice exhibited anxiety-like behavior without impairment in locomotion, food intake, depressive-like behavior or spatial memory. Additionally, the serotonin metabolite 5-HIAA was increased by 33% in the amygdala 24h after palmitic acid treatment. CONCLUSIONS: Palmitic acid induces anxiety-like behavior in mice while increasing amygdala-based serotonin metabolism. These effects occur at a time point when plasma FFA levels are no longer elevated.


Assuntos
Tonsila do Cerebelo/metabolismo , Ansiedade/etiologia , Ácidos Graxos não Esterificados/efeitos adversos , Neurônios/metabolismo , Ácido Palmítico/efeitos adversos , Fator 4 Ativador da Transcrição/antagonistas & inibidores , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Animais , Ansiedade/sangue , Comportamento Animal , Córtex Cerebral/metabolismo , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos não Esterificados/administração & dosagem , Ácidos Graxos não Esterificados/sangue , Regulação da Expressão Gênica , Hipocampo/metabolismo , Ácido Hidroxi-Indolacético/metabolismo , Hiperfagia/metabolismo , Hiperfagia/fisiopatologia , Injeções Intraperitoneais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Ácido Palmítico/administração & dosagem , Ácido Palmítico/sangue
14.
Psychoneuroendocrinology ; 38(9): 1553-64, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23411461

RESUMO

The prevalence of childhood obesity has risen dramatically and coincident with this upsurge is a growth in adverse childhood psychological conditions including impulsivity, depression, anxiety and attention deficit/hyperactive disorder (ADHD). Due to confounds that exist when determining causality of childhood behavioral perturbations, controversy remains as to whether overnutrition and/or childhood obesity is important. Therefore, we examined juvenile mice to determine if biobehaviors were impacted by a short-term feeding (1-3wks) of a high-fat diet (HFD). After 1wk of a HFD feeding, mouse burrowing and spontaneous wheel running were increased while mouse exploration of the open quadrants of a zero maze, perfect alternations in a Y-maze and recognition of a novel object were impaired. Examination of mouse cortex, hippocampus and hypothalamus for dopamine and its metabolites demonstrated increased homovanillic acid (HVA) concentrations in the hippocampus and cortex that were associated with decreased cortical BDNF gene expression. In contrast, pro-inflammatory cytokine gene transcripts and serum IL-1α, IL-1ß, TNF-α and IL-6 were unaffected by the short-term HFD feeding. Administration to mice of the psychostimulant methylphenidate prevented HFD-dependent impairment of learning/memory. HFD learning/memory impairment was not inhibited by the anti-depressants desipramine or reboxetine nor was it blocked in IDO or IL-1R1 knockout mice. In sum, a HFD rapidly impacts dopamine metabolism in the brain appearing to trigger anxiety-like behaviors and learning/memory impairments prior to the onset of weight gain and/or pre-diabetes. Thus, overnutrition due to fats may be central to childhood psychological perturbations such as anxiety and ADHD.


Assuntos
Estimulantes do Sistema Nervoso Central/uso terapêutico , Gorduras na Dieta/efeitos adversos , Deficiências da Aprendizagem/prevenção & controle , Transtornos da Memória/prevenção & controle , Metilfenidato/uso terapêutico , Hipernutrição/psicologia , Ácido 3,4-Di-Hidroxifenilacético/análise , Animais , Antidepressivos/farmacologia , Ansiedade/etiologia , Ansiedade/prevenção & controle , Glicemia/análise , Peso Corporal/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/biossíntese , Fator Neurotrófico Derivado do Encéfalo/genética , Estimulantes do Sistema Nervoso Central/farmacologia , Córtex Cerebral/química , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/fisiopatologia , Citocinas/biossíntese , Citocinas/genética , Desipramina/farmacologia , Dopamina/análise , Comportamento Exploratório/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/química , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Ácido Homovanílico/análise , Indolamina-Pirrol 2,3,-Dioxigenase/deficiência , Deficiências da Aprendizagem/induzido quimicamente , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/induzido quimicamente , Metilfenidato/farmacologia , Camundongos , Camundongos Knockout , Monoaminoxidase/análise , Morfolinas/farmacologia , Atividade Motora/efeitos dos fármacos , Hipernutrição/fisiopatologia , Resistência Física/efeitos dos fármacos , Reboxetina , Receptores Tipo I de Interleucina-1 , Reconhecimento Psicológico/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA