RESUMO
Static high magnetic fields (MFs) interact with the vestibular system of humans and rodents. In rats and mice, exposure to MFs causes perturbations such as head movements, circular locomotion, suppressed rearing, nystagmus, and conditioned taste aversion acquisition. To test the role of otoconia, two mutant mouse models were examined, head-tilt Nox3het (het) and tilted Otop1 (tlt), with mutations, respectively, in Nox3, encoding the NADPH oxidase 3 enzyme, and Otop1, encoding the otopetrin 1 proton channel, which are normally expressed in the otolith organs, and are critical for otoconia formation. Consequently, both mutants show a near complete loss of otoconia in the utricle and saccule, and are nonresponsive to linear acceleration. Mice were exposed to a 14.1 Tesla MF for 30 min. After exposure, locomotor activity, conditioned taste aversion and c-Fos (in het) were assessed. Wild-type mice exposed to the MF showed suppressed rearing, increased latency to rear, locomotor circling, and c-Fos in brainstem nuclei related to vestibular processing (prepositus, spinal vestibular, and supragenual nuclei). Mutant het mice showed no response to the magnet and were similar to sham animals in all assays. Unlike het, tlt mutants exposed to the MF showed significant locomotor circling and suppressed rearing compared with sham controls, although they failed to acquire a taste aversion. The residual responsiveness of tlt versus het mice might reflect a greater semicircular deficit in het mice. These results demonstrate the necessity of the otoconia for the full effect of exposure to high MFs, but also suggest a semicircular contribution.
Assuntos
Membrana dos Otólitos , Vestíbulo do Labirinto , Humanos , Camundongos , Ratos , Animais , Membrana dos Otólitos/fisiologia , Vestíbulo do Labirinto/fisiologia , Campos Magnéticos , Tronco Encefálico , Locomoção , Proteínas de MembranaRESUMO
A large body of evidence support major roles of mitochondrial dysfunction and insulin action in the Alzheimer's disease (AD) brain. However, interaction between cellular expression of ß-amyloid (Aß) and insulin resistance on mitochondrial metabolism has not been explored in neuronal cells. We investigated the additive and synergistic effects of intracellular Aß42 and ceramide-induced insulin resistance on mitochondrial metabolism in SH-SY5Y and Neuro-2a cells. In our model, mitochondria take-up Aß42 expressed through viral-mediated transfection and exposure of the same cells to ceramide produces resistance to insulin signaling. Ceramide alone increased phosphorylated MAP kinases while decreasing phospho-Akt (Ser473). The combination of Aß42 and ceramide synergistically decreased phospho-Thr308 on Akt. Aß42 and ceramide synergistically also decreased mitochondrial complex III activity and ATP generation whereas Aß alone was largely responsible for complex IV inhibition and increases in mitochondrial reactive oxygen species production (ROS). Proteomic analysis showed that a number of mitochondrial respiratory chain and tricarboxylic acid cycle enzymes were additively or synergistically decreased by ceramide in combination with Aß42 expression. Mitochondrial fusion and fission proteins were notably dysregulated by Aß42 (Mfn1) or Aß42 plus ceramide (OPA1, Drp1). Antioxidant vitamins blocked the Aß42 alone-induced ROS production, but did not reverse Aß42-induced ATP reduction or complex IV inhibition. Aß expression combined with ceramide exposure had additive effects to decrease cell viability. Taken together, our data demonstrate that Aß42 expression and ceramide-induced insulin resistance synergistically interact to exacerbate mitochondrial damage and that therapeutic efforts to reduce insulin resistance could lessen failures of energy production and mitochondrial dynamics.
RESUMO
Inclusion body myositis (IBM), a degenerative and inflammatory disorder of skeletal muscle, and Alzheimer's disease share protein derangements and attrition of postmitotic cells. Overexpression of cyclins and proliferating cell nuclear antigen (PCNA) and evidence for DNA replication is reported in Alzheimer's disease brain, possibly contributing to neuronal death. It is unknown whether aberrant cell cycle reentry also occurs in IBM. We examined cell cycle markers in IBM compared with normal control, polymyositis (PM) and non-inflammatory dystrophy sample sets. Next, we tested for evidence of reentry and DNA synthesis in C2C12 myotubes induced to express ß-amyloid (Aß42). We observed increased levels of Ki-67, PCNA and cyclins E/D1 in IBM compared with normals and non-inflammatory conditions. Interestingly, PM samples displayed similar increases. Satellite cell markers did not correlate with Ki-67-affected myofiber nuclei. DNA synthesis and cell cycle markers were induced in Aß-bearing myotubes. Cell cycle marker and cyclin protein expressions were also induced in an experimental allergic myositis-like model of PM in mice. Levels of p21 (Cip1/WAF1), a cyclin-dependent kinase inhibitor, were decreased in affected myotubes. However, overexpression of p21 did not rescue cells from Aß-induced toxicity. This is the first report of cell cycle reentry in human myositis. The absence of rescue and evidence for reentry in separate models of myodegeneration and inflammation suggest that new DNA synthesis may be a reactive response to either or both stressors.
Assuntos
Peptídeos beta-Amiloides/metabolismo , Proteínas de Ciclo Celular/metabolismo , DNA/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Miosite de Corpos de Inclusão/metabolismo , Fragmentos de Peptídeos/metabolismo , Polimiosite/metabolismo , Animais , Ciclo Celular , Linhagem Celular , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Poly(ADP-ribosyl)ation (PARylation) prevents apoptosis through its involvement in pro-survival autophagy in cultured cells; whether or not the same is true for pre-implantation embryos has not yet been documented. In this study, we investigated the participation of PARylation and autophagy in in vitro porcine pre-implantation embryo development. The transcript levels of autophagy-related genes and poly(ADP-ribose) polymerase 1 (PARP1), an enzyme required for PARylation, were transiently up-regulated by fertilization, decreased at the late 1-cell stage, and maintained until the blastocyst stage. LC3, a marker of autophagosomes, and poly(ADP-ribose) (PAR) polymer were present in all stages of pre-implantation development. Exposure of embryos to 3-methyladenine, an autophagy inhibitor, or 3-aminobenzamide, a PARP inhibitor, suppressed the development of blastocysts. Pharmacological inhibition of PARylation further suppressed pro-survival autophagy by decreasing the expression of autophagy-related genes (ATG5, BECLIN1, and LC3) and decreasing LC3 protein abundance while increasing the rate of apoptosis in blastocysts. Deficiency in autophagy also induced abnormal accumulation of SQSTM1/p62 aggregates in porcine blastocysts. Collectively, these data suggest that PARylation is involved in selective autophagic degradation of ubiquitinated proteins, functioning in a pro-survival role, in porcine in vitro-produced embryos. These pro-survival regulatory mechanisms may be important for the control of embryo quality.
Assuntos
Autofagia/fisiologia , Blastocisto/fisiologia , Desenvolvimento Embrionário , Poli Adenosina Difosfato Ribose/metabolismo , Poli(ADP-Ribose) Polimerases/fisiologia , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia/genética , Blastocisto/citologia , Blastocisto/metabolismo , Sobrevivência Celular/genética , Desenvolvimento Embrionário/genética , Fertilização/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , SuínosRESUMO
Elevated circulating levels of saturated free fatty acids (sFFAs; e.g. palmitate) are known to provoke inflammatory responses and cause insulin resistance in peripheral tissue. By contrast, mono- or poly-unsaturated FFAs are protective against sFFAs. An excess of sFFAs in the brain circulation may also trigger neuroinflammation and insulin resistance, however the underlying signaling changes have not been clarified in neuronal cells. In the present study, we examined the effects of palmitate on mitochondrial function and viability as well as on intracellular insulin and nuclear factor-κB (NF-κB) signaling pathways in Neuro-2a and primary rat cortical neurons. We next tested whether oleate preconditioning has a protective effect against palmitate-induced toxicity. Palmitate induced both mitochondrial dysfunction and insulin resistance while promoting the phosphorylation of mitogen-activated protein kinases and nuclear translocation of NF-κB p65. Oleate pre-exposure and then removal was sufficient to completely block subsequent palmitate-induced intracellular signaling and metabolic derangements. Oleate also prevented ceramide-induced insulin resistance. Moreover, oleate stimulated ATP while decreasing mitochondrial superoxide productions. The latter were associated with increased levels of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). Inhibition of protein kinase A (PKA) attenuated the protective effect of oleate against palmitate, implicating PKA in the mechanism of oleate action. Oleate increased triglyceride and blocked palmitate-induced diacylglycerol accumulations. Oleate preconditioning was superior to docosahexaenoic acid (DHA) or linoleate in the protection of neuronal cells against palmitate- or ceramide-induced cytotoxicity. We conclude that oleate has beneficial properties against sFFA and ceramide models of insulin resistance-associated damage to neuronal cells.
Assuntos
Córtex Cerebral/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Ácido Oleico/farmacologia , Ácido Palmítico/antagonistas & inibidores , Animais , Bovinos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento , Resistência à Insulina , Ácido Linoleico/farmacologia , Camundongos , Mitocôndrias/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Ácido Palmítico/farmacologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Ratos , Ratos Sprague-Dawley , Soroalbumina Bovina/química , Transdução de Sinais , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
The emergence of multidrug-resistant bacterial strains has heightened the need for new antimicrobial agents based on novel chemical scaffolds that are able to circumvent current modes of resistance. We recently developed a whole-animal drug-screening methodology in pursuit of this goal and now report the discovery of 3-(phenylsulfonyl)-2-pyrazinecarbonitrile (PSPC) as a novel antibacterial effective against resistant nosocomial pathogens. The minimum inhibitory concentrations (MIC) of PSPC against Staphylococcus aureus and Enterococcus faecium were 4 µg/mL and 8 µg/mL, respectively, whereas the MICs were higher against the Gram-negative bacteria Klebsiella pneumoniae (64 µg/mL), Acinetobacter baumannii (32 µg/mL), Pseudomonas aeruginosa (>64 µg/mL), and Enterobacter spp. (>64 µg/mL). However, co-treatment of PSPC with the efflux pump inhibitor phenylalanine arginyl ß-naphthylamide (PAßN) or with sub-inhibitory concentrations of the lipopeptide antibiotic polymyxin B reduced the MICs of PSPC against the Gram-negative strains by >4-fold. A sulfide analog of PSPC (PSPC-1S) showed no antibacterial activity, whereas the sulfoxide analog (PSPC-6S) showed identical activity as PSPC across all strains, confirming structure-dependent activity for PSPC and suggesting a target-based mechanism of action. PSPC displayed dose dependent toxicity to both Caenorhabditis elegans and HEK-293 mammalian cells, culminating with a survival rate of 16% (100 µg/mL) and 8.5% (64 µg/mL), respectively, at the maximum tested concentration. However, PSPC did not result in hemolysis of erythrocytes, even at a concentration of 64 µg/mL. Together these results support PSPC as a new chemotype suitable for further development of new antibiotics against Gram-positive and Gram-negative bacteria.
Assuntos
Antibacterianos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Pirazinas/farmacologia , Animais , Caenorhabditis elegans , Dipeptídeos/farmacologia , Farmacorresistência Bacteriana , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Células HEK293 , Ensaios de Triagem em Larga Escala , Humanos , Testes de Sensibilidade Microbiana , Polimixina B/farmacologia , Pirazinas/sangue , Ovinos , Vancomicina/farmacologiaRESUMO
[This corrects the article DOI: 10.1371/journal.pone.0261696.].
RESUMO
High-strength static magnetic fields (>7 tesla) perturb the vestibular system causing dizziness, nystagmus, and nausea in humans; and head motion, locomotor circling, conditioned taste aversion, and c-Fos induction in brain stem vestibular nuclei in rodents. To determine the role of head orientation, mice were exposed for 15 min within a 14.1-tesla magnet at six different angles (mice oriented parallel to the field with the head toward B+ at 0°; or pitched rostrally down at 45°, 90°, 90° sideways, 135°, and 180°), followed by a 2-min swimming test. Additional mice were exposed at 0°, 90°, and 180° and processed for c-Fos immunohistochemistry. Magnetic field exposure induced circular swimming that was maximal at 0° and 180° but attenuated at 45° and 135°. Mice exposed at 0° and 45° swam counterclockwise, whereas mice exposed at 135° and 180° swam clockwise. Mice exposed at 90° (with their rostral-caudal axis perpendicular to the magnetic field) did not swim differently than controls. In parallel, exposure at 0° and 180° induced c-Fos in vestibular nuclei with left-right asymmetries that were reversed at 0° vs. 180°. No significant c-Fos was induced after 90° exposure. Thus, the optimal orientation for magnetic field effects is the rostral-caudal axis parallel to the field, such that the horizontal canal and utricle are also parallel to the field. These results have mechanistic implications for modeling magnetic field interactions with the vestibular apparatus of the inner ear (e.g., the model of Roberts et al. of an induced Lorenz force causing horizontal canal cupula deflection).
Assuntos
Comportamento Animal , Campos Magnéticos , Orientação , Proteínas Proto-Oncogênicas c-fos/metabolismo , Natação , Núcleos Vestibulares/metabolismo , Vestíbulo do Labirinto/fisiologia , Animais , Lateralidade Funcional , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Tempo , Regulação para CimaRESUMO
Skeletal muscle atrophy can occur rapidly in various fasting, cancerous, systemic inflammatory, deranged metabolic or neurogenic states. The ubiquitin ligase Atrogin-1 (MAFbx) is induced in animal models of these conditions, causing excessive myoprotein degradation. It is unknown if Atrogin upregulation also occurs in acquired human myositis. Intracellular ß-amyloid (Aßi), phosphorylated neurofilaments, scattered infiltrates and atrophy involving selective muscle groups characterize human sporadic Inclusion Body Myositis (sIBM). In Polymyositis (PM), inflammation is more pronounced and atrophy is symmetric and proximal. IBM and PM share various inflammatory markers. We found that forkhead family transcription factor Foxo3A is directed to the nucleus and Atrogin-1 transcript is increased in both conditions. Expression of Aß in transgenic mice and differentiated C2C12 myotubes was sufficient to upregulate Atrogin-1 mRNA and cause atrophy. Aßi reduces levels of p-Akt and downstream p-Foxo3A, resulting in Foxo3A translocation and Atrogin-1 induction. In a mouse model of autoimmune myositis, cellular inflammation alone was associated with similar Foxo3A and Atrogin changes. Thus, either Aßi accumulation or cellular immune stimulation may independently drive muscle atrophy in sIBM and PM, respectively, through pathways converging on Foxo and Atrogin-1. In sIBM it is additionally possible that both mechanisms synergize.
Assuntos
Fatores de Transcrição Forkhead/biossíntese , Proteínas Musculares/biossíntese , Miosite/metabolismo , Proteínas Ligases SKP Culina F-Box/biossíntese , Animais , Linhagem Celular Tumoral , Feminino , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Musculares/genética , Miosite/genética , Miosite/patologia , Transporte Proteico/genética , Proteínas Ligases SKP Culina F-Box/genéticaRESUMO
The intracellular mitogen-activated protein kinase (MAPK) pathway in the brain is necessary for the formation of a variety of memories including conditioned taste aversion (CTA) learning. However, the functional role of MAPK activation in the amygdala during lithium chloride (LiCl)-induced CTA learning has not been established. In the present study, we investigated if local microinjection of SL327, a MAPK kinase inhibitor, into the rat amygdala could alleviate LiCl-induced CTA learning. Our results revealed that acute administration of a high dose of LiCl (0.15M, 12 ml/kg, i.p.) rapidly increased the level of phosphorylated MAPK (pMAPK)-positive cells in the central nucleus of the amygdala (CeA) and nucleus of the solitary tract (NTS) of rats as measured by immunohistochemistry. Local microinjection of SL327 (1 µg/0.5 µl/hemisphere) into the CeA 10 min before LiCl administration decreased both the strength of LiCl-induced CTA paired with 0.125% saccharin and the level of LiCl-induced pMAPK-positive cells in the CeA, but not in the NTS. Our data suggest that the intracellular signaling cascade of the MAPK pathway in the CeA plays a critical role in the processing of visceral information induced by LiCl for CTA learning.
Assuntos
Tonsila do Cerebelo/fisiologia , Aprendizagem da Esquiva/fisiologia , Condicionamento Psicológico/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Paladar/fisiologia , Aminoacetonitrila/análogos & derivados , Aminoacetonitrila/farmacologia , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/metabolismo , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Condicionamento Psicológico/efeitos dos fármacos , Cloreto de Lítio/farmacologia , Masculino , Microinjeções , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Inibidores de Proteases/farmacologia , Ratos , Ratos Sprague-Dawley , Núcleo Solitário/metabolismoRESUMO
5-bromo-2-deoxyuridine (BrdU) is often used in studies of adult neurogenesis and olfactory learning, but it can also have toxic effects on highly proliferative tissue. We found that pairing Kool-Aid flavors with acute systemic injections of BrdU induced strong conditioned flavor aversions. Intermittent injections during Kool-Aid-glucose conditioning interfered with learning of a conditioned flavor-nutrient preference. Acute injection of BrdU also elevated plasma corticosterone levels and induced c-Fos in the visceral neuraxis. Thus, acute or intermittent systemic injections of BrdU (50-200 mg/kg) have aversive effects that may interfere with learning.
Assuntos
Aprendizagem por Associação/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Bromodesoxiuridina/toxicidade , Condicionamento Psicológico/efeitos dos fármacos , Genes fos/efeitos dos fármacos , Coloração e Rotulagem/métodos , Animais , Masculino , Ratos , Paladar , Vísceras/inervaçãoRESUMO
The Alzheimer's brain is affected by multiple pathophysiological processes, which include a unique, organ-specific form of insulin resistance that begins early in its course. An additional complexity arises from the four-fold risk of Alzheimer's Disease (AD) in type 2 diabetics, however there is no definitive proof of causation. Several strategies to improve brain insulin signaling have been proposed and some have been clinically tested. We report findings on a small allosteric molecule that reverses several indices of insulin insensitivity in both cell culture and in vitro models of AD that emphasize the intracellular accumulation of ß-amyloid (Aßi). PS48, a chlorophenyl pentenoic acid, is an allosteric activator of PDK-1, which is an Akt-kinase in the insulin/PI3K pathway. PS48 was active at 10 nM to 1 µM in restoring normal insulin-dependent Akt activation and in mitigating Aßi peptide toxicity. Synaptic plasticity (LTP) in prefrontal cortical slices from normal rat exposed to Aß oligomers also benefited from PS48. During these experiments, neither overstimulation of PI3K/Akt signaling nor toxic effects on cells was observed. Another neurotoxicity model producing insulin insensitivity, utilizing palmitic acid, also responded to PS48 treatment, thus validating the target and indicating that its therapeutic potential may extend outside of ß-amyloid reliance. The described in vitro and cell based-in vitro coupled enzymatic assay systems proved suitable platforms to screen a preliminary library of new analogs.
Assuntos
Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Insulina/metabolismo , Neurônios/metabolismo , Ácidos Pentanoicos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/antagonistas & inibidores , Regulação Alostérica/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Ratos , Ratos Sprague-DawleyRESUMO
Vertigo is a commonly-reported side effect of exposure to the high magnetic fields found in magnetic resonance imaging machines. Although it has been hypothesized that high magnetic fields interact with the vestibular apparatus of the inner ear, there has been no direct evidence establishing its role in magnet-induced vertigo. Our laboratory has shown that following exposure to high magnetic fields, rats walk in circles, acquire a conditioned taste aversion (CTA), and express c-Fos in vestibular and visceral relays of the brainstem, consistent with vestibular stimulation and vertigo or motion sickness. To determine if the inner ear is required for these effects, rats were chemically labyrinthectomized with sodium arsanilate and tested for locomotor circling, CTA acquisition, and c-Fos induction after exposure within a 14.1 T magnet. Intact rats circled counterclockwise after 30-min exposure to 14.1 T, but labyrinthectomized rats showed no increase in circling after magnetic field exposure. After 3 pairings of 0.125% saccharin with 30-min exposure at 14.1 T, intact rats acquired a profound CTA that persisted for 14 days of extinction testing; labyrinthectomized rats, however, did not acquire a CTA and showed a high preference for saccharin similar to sham-exposed rats. Finally, significant c-Fos was induced in the brainstem of intact rats by 30-min exposure to 14.1 T, but magnetic field exposure did not elevate c-Fos in labyrinthectomized rats above sham-exposed levels. These results demonstrate that an intact inner ear is necessary for all the observed effects of exposure to high magnetic fields in rats.
Assuntos
Tronco Encefálico/metabolismo , Condicionamento Psicológico/fisiologia , Orelha Interna/fisiologia , Locomoção , Magnetismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Animais , Ácido Arsanílico , Feminino , Vias Neurais/metabolismo , Ratos , Ratos Sprague-DawleyRESUMO
Conditioned taste aversion (CTA) learning occurs after the pairing of a novel taste with a toxin (e.g. sucrose with LiCl). The immediate early gene c-Fos is necessary for CTA learning, but c-Fos alone cannot be sufficient for consolidation. The expression of other AP-1 proteins from the Fos- and Jun-families may also be required shortly after conditioning for CTA consolidation. To screen for the expression of AP-1 transcription factors within small subregions, RT-PCR analysis was used after laser capture microdissection of the amygdala. Rats were infused intraorally with 5% sucrose (6 ml/6 min) or injected with LiCl (12 ml/kg, 0.15 M, i.p.) or given sucrose paired with LiCl (sucrose/LiCl), or not treated; 1 h later their brains were dissected. The lateral (LA), basolateral (BLA), and central (CeA) subnuclei of the amgydala of single 5 microm sections from individual rats were dissected using the Arcturus PixCell II system. Semi-quantitative RT-PCR showed the consistent presence of c-Fos, Fra-2, c-Jun, and JunD in the amygdala. In situ hybridization confirmed that c-Fos and Fra-2 mRNA expression was increased in the CeA after LiCl and sucrose/LiCl treatment. Immunohistochemistry for Fra-2 revealed high baseline levels of Fra-2 protein in the BLA and CeA, but also an increase in Fra-2 in the BLA and CeA after LiCl and sucrose/LiCl treatment. The similarity of response in LiCl and sucrose/LiCl treated groups might reflect activation by LiCl in both groups. To control for the effects of LiCl, rats were tested in a learned safety experiment. Fra-2 and c-Fos were examined in response to sucrose/LiCl in rats with prior familiarity with sucrose compared to rats without prior exposure to sucrose. The familiar (pre-exposure) group showed a significantly decreased number of Fra-2-positive cells compared with the novel group in the BLA, but not in the CeA. Because pre-exposure to sucrose attenuates CTA learning, a decreased cellular response in pre-exposed rats suggests a specific correlation with CTA learning. Changes in Fra-2 and c-Fos expression in the BLA and CeA at the time of conditioning, together with constitutive expression of c-Jun and JunD, may contribute to CTA learning.
Assuntos
Tonsila do Cerebelo/fisiologia , Aprendizagem da Esquiva/fisiologia , Antígeno 2 Relacionado a Fos/fisiologia , Regulação da Expressão Gênica/fisiologia , Paladar , Análise de Variância , Animais , Comportamento Animal , Preferências Alimentares , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Cloreto de Lítio/farmacologia , Masculino , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-DawleyRESUMO
The emergence of Staphylococcus aureus strains resistant to 'last resort' antibiotics compels the development of new antimicrobials against this important human pathogen. We found that propyl 5-hydroxy-3-methyl-1-phenyl-1H-pyrazole-4-carbodithioate (HMPC) shows bacteriostatic activity against S. aureus (MIC = 4 µg/ml) and rescues Caenorhabditis elegans from S. aureus infection. Whole-genome sequencing of S. aureus mutants resistant to the compound, along with screening of a S. aureus promoter-lux reporter array, were used to explore possible mechanisms of action. All mutants resistant to HMPC acquired missense mutations at distinct codon positions in the global transcriptional regulator mgrA, followed by secondary mutations in the phosphatidylglycerol lysyltransferase fmtC/mprF. The S. aureus promoter-lux array treated with HMPC displayed a luminescence profile that was unique but showed similarity to DNA-damaging agents and/or DNA replication inhibitors. Overall, HMPC is a new anti-staphylococcal compound that appears to act via an unknown mechanism linked to the global transcriptional regulator MgrA.
Assuntos
Antibacterianos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Antibacterianos/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Relação Dose-Resposta a Droga , Genoma Bacteriano , Humanos , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/metabolismo , Testes de Sensibilidade Microbiana , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Mutação , Relação Estrutura-Atividade , Sequenciamento Completo do GenomaRESUMO
Conventional antibiotics are not effective in treating infections caused by drug-resistant or persistent nongrowing bacteria, creating a dire need for the development of new antibiotics. We report that the small molecule nTZDpa, previously characterized as a nonthiazolidinedione peroxisome proliferator-activated receptor gamma partial agonist, kills both growing and persistent Staphylococcus aureus cells by lipid bilayer disruption. S. aureus exhibited no detectable development of resistance to nTZDpa, and the compound acted synergistically with aminoglycosides. We improved both the potency and selectivity of nTZDpa against MRSA membranes compared to mammalian membranes by leveraging synthetic chemistry guided by molecular dynamics simulations. These studies provide key insights into the design of selective and potent membrane-active antibiotics effective against bacterial persisters.
Assuntos
Antibacterianos/farmacologia , Descoberta de Drogas , Indóis/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Sulfetos/farmacologia , Eritrócitos/efeitos dos fármacos , Humanos , Bicamadas Lipídicas/metabolismo , Testes de Sensibilidade Microbiana , Staphylococcus aureus/efeitos dos fármacosRESUMO
High-strength static magnetic fields of 7 T and above have been shown to have both immediate and delayed effects on rodents, such as the induction of locomotor circling and the acquisition of conditioned taste aversions. In this study, the acute effects of magnet field exposure on drinking were examined. Exposure to a 14.1-T magnetic field for as little as 5 min significantly decreased the amount of a glucose and saccharin solution (G+S) consumed by water-deprived rats over 10 min. The decreased intake could be accounted for largely, but not entirely, by an increase in the latency of magnet-exposed rats to initiate drinking. When intake was measured for 10-60 min after the initiation of drinking, thus controlling for increased latency, magnet-exposed rats still consumed less G+S than sham-exposed rats. The increased latency was not due simply to an inability of magnet-exposed rats to reach the elevated sipper tube of the G+S bottle, providing rats with long tubes that could be reached without raising their heads normalized intake but latency was still increased. The increased latency and decreased intake appeared to be secondary to somatic effects of magnet exposure, however, because during intraoral infusions magnet-exposed rats consumed the same amount of G+S with the same latency to reject as sham-exposed rats. The suppression of drinking by magnetic field exposure is consistent with the acute effects of other aversive stimuli, such as whole-body rotation, on short-term ingestion. These results add to the evidence that high-static strength magnetic fields can have behavioral effects on rodents.
Assuntos
Comportamento Apetitivo/fisiologia , Comportamento Animal/fisiologia , Comportamento de Ingestão de Líquido/fisiologia , Campos Eletromagnéticos , Desempenho Psicomotor/fisiologia , Animais , Masculino , Ratos , Ratos Sprague-Dawley , Tempo de Reação/fisiologiaRESUMO
Mammalian target of rapamycin complex 1 (mTORC1), a nutrient sensor and central controller of cell growth and proliferation, is altered in various models of Alzheimer's disease (AD). Even less studied or understood in AD is mammalian target of rapamycin complex 2 (mTORC2) that influences cellular metabolism, in part through the regulations of Akt/PKB and SGK. Dysregulation of insulin/PI3K/Akt signaling is another important feature of AD pathogenesis. We found that both total mTORC1 and C2 protein levels and individual C1 and C2 enzymatic activities were decreased in human AD brain samples. In two rodent AD models, mTORC1 and C2 activities were also decreased. In a neuronal culture model of AD characterized by accumulation of cellular amyloid-ß (Aß)42, mTORC1 activity was reduced. Autophagic vesicles and markers were correspondingly increased and new protein synthesis was inhibited, consistent with mTORC1 hypofunction. Interestingly, mTORC2 activity in neural culture seemed resistant to the effects of intracellular amyloid. In various cell lines, Aß expression provoked insulin resistance, characterized by inhibition of stimulated Akt phosphorylation, and an increase in negative mTORC1 regular, p-AMPK, itself a nutrient sensor. Rapamycin decreased phospho-mTOR and to lesser degree p-Rictor. This further suppression of mTORC1 activity protected cells from Aß-induced toxicity and insulin resistance. More striking, Rictor over-expression fully reversed the Aß-effects on primary neuronal cultures. Finally, using in vitro assay, Rictor protein addition completely overcame oligomeric Aß-induced inhibition of the PDK-Akt activation step. We conclude that striking a new balance by restoring mTORC2 abundance and/or inhibition of mTORC1 has therapeutic potential in AD.
Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Córtex Cerebral/metabolismo , Resistência à Insulina/fisiologia , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Neurônios/metabolismo , Fragmentos de Peptídeos/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Animais , Autofagia/fisiologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Córtex Cerebral/patologia , Feminino , Humanos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos Transgênicos , Pessoa de Meia-Idade , Neurônios/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-DawleyRESUMO
AIM: Increasing antimicrobial resistance has compromised the effectiveness of many antibiotics, including those used to treat staphylococcal infections like methicillin-resistant Staphylococcus aureus. The development of combination therapies, where antimicrobial agents are used with compounds that inhibit resistance pathways is a promising strategy. Results/methodology: The Raf kinase inhibitor GW5074 exhibited selective in vitro activity against Gram-positive bacteria, including clinical isolates of S. aureus with a minimum inhibitory concentration (MIC) of 2-8 µg/ml. GW5074 was effective in vivo in the Galleria mellonella infection model. The compound showed synergy with gentamicin by lowering MIC by fourfold, compared with gentamicin MIC alone. CONCLUSION: This work demonstrates the antimicrobial properties of GW5074 and supports further investigation of the kinase inhibitors as antibiotic adjuvants.
RESUMO
It has been reported previously that exposure to static high magnetic fields of 7 T or above in superconducting magnets has behavioral effects on rats. In particular, magnetic field exposure acutely but transiently suppressed rearing and induced walking in tight circles; the direction of circular locomotion was dependent on the rats' orientation within the magnet. Furthermore, when magnet exposure was paired with consumption of a palatable, novel solution, rats acquired a persistent taste aversion. In order to confirm these results under more controlled conditions, we exposed rats to static magnetic fields of 4 to 19.4 T in a 189 mm bore, 20 T resistive magnet. By using a resistive magnet, field strengths could be arbitrary varied from -19.4 to 19.4 T within the same bore. Rearing was suppressed after exposure to 4 T and above; circling was observed after 7 T and above. Conditioned taste aversion was acquired after 14 T and above. The effects of the magnetic fields were dependent on orientation. Exposure to +14 T induced counter-clockwise circling, while exposure to -14 T induced clockwise circling. Exposure with the rostral-caudal axis of the rat perpendicular to the magnetic field produced an attenuated behavioral response compared to exposure with the rostral-caudal axis parallel to the field. These results in a single resistive magnet confirm and extend our earlier findings using multiple superconducting magnets. They demonstrate that the behavioral effects of exposure within large magnets are dependent on the magnetic field, and not on non-magnetic properties of the machinery. Finally, the effects of exposure to 4 T are clinically relevant, as 4 T magnetic fields are commonly used in functional MRI assays.