RESUMO
BACKGROUND: Although hypomethylating agents are currently used to treat patients with cancer, whether they can also reactivate and up-regulate oncogenes is not well elucidated. METHODS: We examined the effect of hypomethylating agents on SALL4, a known oncogene that plays an important role in myelodysplastic syndrome and other cancers. Paired bone marrow samples that were obtained from two cohorts of patients with myelodysplastic syndrome before and after treatment with a hypomethylating agent were used to explore the relationships among changes in SALL4 expression, treatment response, and clinical outcome. Leukemic cell lines with low or undetectable SALL4 expression were used to study the relationship between SALL4 methylation and expression. A locus-specific demethylation technology, CRISPR-DNMT1-interacting RNA (CRISPR-DiR), was used to identify the CpG island that is critical for SALL4 expression. RESULTS: SALL4 up-regulation after treatment with hypomethylating agents was observed in 10 of 25 patients (40%) in cohort 1 and in 13 of 43 patients (30%) in cohort 2 and was associated with a worse outcome. Using CRISPR-DiR, we discovered that demethylation of a CpG island within the 5' untranslated region was critical for SALL4 expression. In cell lines and patients, we confirmed that treatment with a hypomethylating agent led to demethylation of the same CpG region and up-regulation of SALL4 expression. CONCLUSIONS: By combining analysis of patient samples with CRISPR-DiR technology, we found that demethylation and up-regulation of an oncogene after treatment with a hypomethylating agent can indeed occur and should be further studied. (Funded by Associazione Italiana per la Ricerca sul Cancro and others.).
Assuntos
Antineoplásicos , Desmetilação , Síndromes Mielodisplásicas , Oncogenes , Regulação para Cima , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Desmetilação/efeitos dos fármacos , Humanos , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Oncogenes/efeitos dos fármacos , Oncogenes/fisiologia , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Cima/efeitos dos fármacosRESUMO
The shikimate pathway synthesizes aromatic amino acids essential for protein biosynthesis. Shikimate dehydrogenase (SDH) is a central enzyme of this primary metabolic pathway, producing shikimate. The structurally similar quinate is a secondary metabolite synthesized by quinate dehydrogenase (QDH). SDH and QDH belong to the same gene family, which diverged into two phylogenetic clades after a defining gene duplication just prior to the angiosperm/gymnosperm split. Non-seed plants that diverged before this duplication harbour only a single gene of this family. Extant representatives from the chlorophytes (Chlamydomonas reinhardtii), bryophytes (Physcomitrella patens) and lycophytes (Selaginella moellendorfii) encoded almost exclusively SDH activity in vitro. A reconstructed ancestral sequence representing the node just prior to the gene duplication also encoded SDH activity. Quinate dehydrogenase activity was gained only in seed plants following gene duplication. Quinate dehydrogenases of gymnosperms, represented here by Pinus taeda, may be reminiscent of an evolutionary intermediate since they encode equal SDH and QDH activities. The second copy in P. taeda maintained specificity for shikimate similar to the activity found in the angiosperm SDH sister clade. The codon for a tyrosine residue within the active site displayed a signature of positive selection at the node defining the QDH clade, where it changed to a glycine. Replacing the tyrosine with a glycine in a highly shikimate-specific angiosperm SDH was sufficient to gain some QDH function. Thus, very few mutations were necessary to facilitate the evolution of QDH genes.
RESUMO
The role of miRNAs with tumor suppressive activity in liver cancer has been well studied. However, little is known about potential oncomiRs in HCC. In our study, we conducted a systematic evaluation of candidate oncomiRs and found that upregulation of miR-18a and miR-25 in HCC was associated with poor patient survival and promoted proliferation in HCC cell lines. These two miRNAs belong to the polycistronic paralogous miR-17-92 and miR-25-106b clusters respectively. Although the members of both clusters are often upregulated in HCC, the contribution of individual miRNAs in these clusters to HCC tumorigenesis is not fully understood. We validated SOCS5 as a bona fide target of both miRNAs, and established, for the first time, the tumor suppressive role of SOCS5 in liver cancer. We further investigated the mechanism by which SOCS5 contributes to tumorigenesis, demonstrated that this SOCS5/miR-18a/miR-25 axis regulates the tumor suppressor TSC1 and downstream mTOR signaling, and highlighted the potential therapeutic use of miR-18a and miR-25 inhibition in restoring SOCS5 levels in HCC.
Assuntos
Carcinogênese/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , MicroRNAs/genética , Proteínas Supressoras da Sinalização de Citocina/biossíntese , Carcinoma Hepatocelular/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Hepáticas/genética , Proteínas Supressoras da Sinalização de Citocina/genéticaRESUMO
Pseudogenes, noncoding homologs of protein-coding genes, once considered nonfunctional evolutionary relics, have recently been linked to patient prognoses and cancer subtypes. Despite this potential clinical importance, only a handful of >12,000 pseudogenes in humans have been characterized in cancers to date. Here, we describe a previously unrecognized role for pseudogenes as potent epigenetic regulators that can demethylate and activate oncogenes. We focused on SALL4, a known oncogene in hepatocellular carcinoma (HCC) with eight pseudogenes. Using a locus-specific demethylating technology, we identified the critical CpG region for SALL4 expression. We demonstrated that SALL4 pseudogene 5 hypomethylates this region through interaction with DNMT1, resulting in SALL4 up-regulation. Intriguingly, pseudogene 5 is significantly up-regulated in a hepatitis B virus model before SALL4 induction, and both are increased in patients with HBV-HCC. Our results suggest that pseudogene-mediated demethylation represents a novel mechanism of oncogene activation in cancer.
RESUMO
Oncofetal protein SALL4 is critical for cancer cell survival. Targeting SALL4, however, is only applicable in a fraction of cancer patients who are positive for this gene. To overcome this limitation, we propose to induce a cancer vulnerability by engineering a partial dependency upon SALL4. Following exogenous expression of SALL4, SALL4-negative cancer cells became partially dependent on SALL4. Treatment of SALL4-negative cells with the FDA-approved hypomethylating agent 5-aza-2'-deoxycytidine (DAC) resulted in transient upregulation of SALL4. DAC pretreatment sensitized SALL4-negative cancer cells to entinostat, which negatively affected SALL4 expression through a microRNA, miRNA-205, both in culture and in vivo. Moreover, SALL4 was essential for the efficiency of sequential treatment of DAC and entinostat. Overall, this proof-of-concept study provides a framework whereby the targeting pathways such as SALL4-centered therapy can be expanded, sensitizing cancer cells to treatment by transient target induction and engineering a dependency. SIGNIFICANCE: These findings provide a therapeutic approach for patients harboring no suitable target by induction of a SALL4-mediated vulnerability.