Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Proteome Res ; 20(8): 4001-4009, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34291951

RESUMO

Glucocorticoids are the first-line treatment for sensorineural hearing loss, but little is known about the mechanism of their protective effect or the impact of route of administration. The recent development of hollow microneedles enables safe and reliable sampling of perilymph for proteomic analysis. Using these microneedles, we investigate the effect of intratympanic (IT) versus intraperitoneal (IP) dexamethasone administration on guinea pig perilymph proteome. Guinea pigs were treated with IT dexamethasone (n = 6), IP dexamethasone (n = 8), or untreated for control (n = 8) 6 h prior to aspiration. The round window membrane (RWM) was accessed via a postauricular approach, and hollow microneedles were used to perforate the RWM and aspirate 1 µL of perilymph. Perilymph samples were analyzed by liquid chromatography-mass spectrometry-based label-free quantitative proteomics. Mass spectrometry raw data files have been deposited in an international public repository (MassIVE proteomics repository at https://massive.ucsd.edu/) under data set # MSV000086887. In the 22 samples of perilymph analyzed, 632 proteins were detected, including the inner ear protein cochlin, a perilymph marker. Of these, 14 proteins were modulated by IP, and three proteins were modulated by IT dexamethasone. In both IP and IT dexamethasone groups, VGF nerve growth factor inducible was significantly upregulated compared to control. The remaining adjusted proteins modulate neurons, inflammation, or protein synthesis. Proteome analysis facilitated by the use of hollow microneedles shows that route of dexamethasone administration impacts changes seen in perilymph proteome. Compared to IT administration, the IP route was associated with greater changes in protein expression, including proteins involved in neuroprotection, inflammatory pathway, and protein synthesis. Our findings show that microneedles can mediate safe and effective intracochlear sampling and hold promise for inner ear diagnostics.


Assuntos
Dexametasona/administração & dosagem , Glucocorticoides/administração & dosagem , Perilinfa , Proteoma , Animais , Cobaias , Injeção Intratimpânica , Proteômica
2.
Mater Des ; 2092021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34366534

RESUMO

A cardiovascular stent design optimization method is proposed with application to a pediatric balloon-expandable prosthetic heart valve. The prosthetic valved conduit may be expanded to a larger permanent diameter in vivo via subsequent transcatheter balloon dilation procedures. While multiple expandable prosthetic heart valves are currently at different stages of development, this work is focused on one particular design in which a stent is situated inside of an expandable polymeric valved conduit. Since the valve and conduit must be joined with a robust manufacturing technique, a polymeric glue layer is inserted between the two, which results in radial retraction of the valved region after expansion. Design of an appropriate stent is proposed to counteract this phenomenon and maintain the desired permanent diameter throughout the device after a single non-compliant balloon dilation procedure. The finite element method is used to compute performance metrics related to the permanent expansion diameter and required radial force. Additionally, failure due not only to high cycle fatigue but also due to ductile fracture is incorporated into the design study through the use of an existing ductile fracture criterion for metals. Surrogate models are constructed with the results of the high fidelity simulations and are subsequently used to numerically obtain a set of Pareto-optimal stent designs. Finally, a single design is identified by optimizing a normalized aggregate objective function with equal weighting of all design objectives.

3.
J Manuf Process ; 66: 211-219, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34012359

RESUMO

Fully metallic micrometer-scale 3D architectures can be fabricated via a hybrid additive methodology combining multi-photon lithography with electrochemical deposition of metals. The methodology - referred to as two-photon templated electrodeposition (2PTE) - has significant design freedom that enables the creation of complicated, traditionally difficult-to-make, high aspect ratio metallic structures such as microneedles. These complicated geometries, combined with their fully metallic nature, can enable precision surgical applications such as inner ear drug delivery or fluid sampling. However, the process involves electrochemical deposition of metals into complicated 3D lithography patterns thicker than 500 µm. This causes potential and chemical gradients to develop within the 3D template, creating limitations to what can be designed. These limitations can be explored, understood, and overcome via numerical modeling. Herein we introduce a numerical model as a design tool that can predict growth for manufacturing complicated 3D metallic geometries. The model is successful in predicting the geometric result of 2PTE, and enables extraction of insights about geometric constraints through exploration of its mechanics.

4.
J Chem Phys ; 153(2): 024702, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32668931

RESUMO

When layers of van der Waals materials are deposited via exfoliation or viscoelastic stamping, nanobubbles are sometimes created from aggregated trapped fluids. Though they can be considered a nuisance, nanobubbles have attracted scientific interest in their own right owing to their ability to generate large in-plane strain gradients that lead to rich optoelectronic phenomena, especially in the semiconducting transition metal dichalcogenides. Determination of the strain within the nanobubbles, which is crucial to understanding these effects, can be approximated using elasticity theory. However, the Föppl-von Kármán equations that describe strain in a distorted thin plate are highly nonlinear and often necessitate assuming circular symmetry to achieve an analytical solution. Here, we present an easily implemented numerical method to solve for strain tensors of nanobubbles with arbitrary symmetry in 2D crystals. The method only requires topographic information from atomic force microscopy and the Poisson ratio of the 2D material. We verify that this method reproduces the strain for circularly symmetric nanobubbles that have known analytical solutions. Finally, we use the method to reproduce the Grüneisen parameter of the E' mode for 1L-WS2 nanobubbles on template-stripped Au by comparing the derived strain with measured Raman shifts from tip-enhanced Raman spectroscopy, demonstrating the utility of our method for estimating localized strain in 2D crystals.

5.
Biomed Microdevices ; 20(2): 47, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29884927

RESUMO

The cochlea, or inner ear, is a space fully enclosed within the temporal bone of the skull, except for two membrane-covered portals connecting it to the middle ear space. One of these portals is the round window, which is covered by the Round Window Membrane (RWM). A longstanding clinical goal is to reliably and precisely deliver therapeutics into the cochlea to treat a plethora of auditory and vestibular disorders. Standard of care for several difficult-to-treat diseases calls for injection of a therapeutic substance through the tympanic membrane into the middle ear space, after which a portion of the substance diffuses across the RWM into the cochlea. The efficacy of this technique is limited by an inconsistent rate of molecular transport across the RWM. A solution to this problem involves the introduction of one or more microscopic perforations through the RWM to enhance the rate and reliability of diffusive transport. This paper reports the use of direct 3D printing via Two-Photon Polymerization (2PP) lithography to fabricate ultra-sharp polymer microneedles specifically designed to perforate the RWM. The microneedle has tip radius of 500 nm and shank radius of 50 µ m, and perforates the guinea pig RWM with a mean force of 1.19 mN. The resulting perforations performed in vitro are lens-shaped with major axis equal to the microneedle shank diameter and minor axis about 25% of the major axis, with mean area 1670 µ m2. The major axis is aligned with the direction of the connective fibers within the RWM. The fibers were separated along their axes without ripping or tearing of the RWM suggesting the main failure mechanism to be fiber-to-fiber decohesion. The small perforation area along with fiber-to-fiber decohesion are promising indicators that the perforations would heal readily following in vivo experiments. These results establish a foundation for the use of Two-Photon Polymerization lithography as a means to fabricate microneedles to perforate the RWM and other similar membranes.


Assuntos
Sistemas de Liberação de Medicamentos/instrumentação , Agulhas , Impressão Tridimensional , Janela da Cóclea/metabolismo , Animais , Transporte Biológico , Desenho de Equipamento , Cobaias
6.
Biomed Microdevices ; 18(2): 24, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26888440

RESUMO

Precision medicine for inner-ear disease is hampered by the absence of a methodology to sample inner-ear fluid atraumatically. The round window membrane (RWM) is an attractive portal for accessing cochlear fluids as it heals spontaneously. In this study, we report on the development of a microneedle for perilymph sampling that minimizes the size of RWM perforation, facilitates quick aspiration, and provides precise volume control. Here, considering the mechanical anisotropy of the RWM and hydrodynamics through a microneedle, a 31G stainless steel pipe was machined into wedge-shaped design via electrical discharge machining. The sharpness of the needle was evaluated via a surface profilometer. Guinea pig RWM was penetrated in vitro, and 1 µL of perilymph was sampled and analyzed via UV-vis spectroscopy. The prototype wedge shaped needle was successfully fabricated with the tip curvature of 4.5 µm and the surface roughness of 3.66 µm in root mean square. The needle created oval perforation with minor and major diameter of 143 and 344 µm (n = 6). The sampling duration and standard deviation of aspirated volume were 3 s and 6.8 % respectively. The protein concentration was 1.74 mg/mL. The prototype needle facilitated precise perforation of RWMs and rapid aspiration of cochlear fluid with precise volume control. The needle design is promising and requires testing in human cadaveric temporal bone and further optimization to become clinically viable.


Assuntos
Microtecnologia/instrumentação , Agulhas , Paracentese/instrumentação , Perilinfa , Membrana Timpânica/citologia , Animais , Cóclea/citologia , Desenho de Equipamento , Cobaias , Humanos , Perilinfa/metabolismo , Soluções , Fatores de Tempo
7.
Nano Lett ; 15(8): 5465-71, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26192340

RESUMO

It is now well accepted that the addition of nanoparticles (NPs) can strongly affect the thermomechanical properties of the polymers into which they are incorporated. In the solid (glassy) state, previous work has implied that optimal mechanical properties are achieved when the NPs are well dispersed in the matrix and when there is strong interfacial binding between the grafted NPs and the polymer matrix. Here we provide strong evidence supporting the importance of intermolecular interactions through the use of NPs grafted with polymers that can hydrogen bond with the matrix, yielding to significant improvements in the measured mechanical properties. Our finding thus supports the previously implied central role of strong interfacial binding in optimizing the mechanical properties of polymer nanocomposites.

8.
Laryngoscope ; 134(1): 388-392, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37318112

RESUMO

OBJECTIVES: Oral or intratympanic corticosteroids are commonly used to treat sudden sensorineural hearing loss (SSHL), tinnitus, and Meniere disease. Direct intracochlear delivery has been proposed to overcome the variability in bioavailability and efficacy of systemic or middle ear delivery. In this study, we aim to characterize the physiologic consequences of microneedle-mediated direct intracochlear injection of dexamethasone through the round window membrane (RWM). METHODS: In Hartley guinea pigs (n = 5), a post-auricular incision followed by bullostomy was made to access the round window membrane. Using 100 µm diameter hollow microneedles, 1.0 µl of 10 mg/ml dexamethasone was injected through the RWM over 1 min. Compound action potential (CAP) and distortion product otoacoustic action emissions (DPOAE) were measured before perforation, at 1 h, and at 5 h following injection. CAP hearing thresholds were measured from 0.5 to 40 kHz, and DPOAE f2 frequencies ranged from 1.0 and 32 kHz. Repeated measures ANOVA followed by pairwise t-tests were used for statistical analysis. RESULTS: ANOVA identified significant CAP threshold shifts at four frequencies (4, 16, 36, and 40 kHz) and differences in DPOAE at 1 frequency (6 kHz). Paired t-tests revealed differences between the pre-perforation and 1 h time point. By 5 h post injection, both CAP hearing thresholds and DPOAE recover and are not significantly different from baseline thresholds. CONCLUSION: Direct intracochlear delivery of dexamethasone via microneedles results in temporary shifts in hearing thresholds that resolve by 5 hours, thus supporting microneedle technology for the treatment of inner ear disorders. LEVEL OF EVIDENCE: NA Laryngoscope, 134:388-392, 2024.


Assuntos
Perda Auditiva Neurossensorial , Doença de Meniere , Zumbido , Cobaias , Animais , Audição , Dexametasona
9.
Brain Sci ; 14(6)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38928621

RESUMO

Recent evidence shows that it is possible to identify the elements responsible for sensorineural hearing loss, such as pro-inflammatory cytokines and macrophages, by performing perilymph sampling. However, current studies have only focused on the diagnosis of such as otologic conditions. Hearing loss is a feature of certain neuroinflammatory disorders such as multiple sclerosis, and sensorineural hearing loss (SNHL) is widely detected in Alzheimer's disease. Although the environment of the inner ear is highly regulated, there are several communication pathways between the perilymph of the inner ear and cerebrospinal fluid (CSF). Thus, examination of the perilymph may help understand the mechanism behind the hearing loss observed in certain neuroinflammatory and neurodegenerative diseases. Herein, we review the constituents of CSF and perilymph, the anatomy of the inner ear and its connection with the brain. Then, we discuss the relevance of perilymph sampling in neurology. Currently, perilymph sampling is only performed during surgical procedures, but we hypothesize a simplified and low-invasive technique that could allow sampling in a clinical setting with the same ease as performing an intratympanic injection under direct visual check. The use of this modified technique could allow for perilymph sampling in people with hearing loss and neuroinflammatory/neurodegenerative disorders and clarify the relationship between these conditions; in fact, by measuring the concentration of neuroinflammatory and/or neurodegenerative biomarkers and those typically expressed in the inner ear in aging SNHL, it could be possible to understand if SNHL is caused by aging or neuroinflammation.

10.
Nanotechnology ; 24(16): 165502, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23538966

RESUMO

Nanoscale materials often have stochastic material properties due to a random distribution of material defects and an insufficient number of defects to ensure a consistent average mechanical response. Current methods to measure the mechanical properties employ MEMS-based actuators. The nanoscale specimens are typically mounted manually onto the load platform, so the boundary conditions have random variations, complicating the experimental measurement of the intrinsic stochasticity of the material properties. Here we show methods for monolithic integration of a nanoscale specimen co-fabricated with the loading platform. The nanoscale specimen is gold with dimensions of ∼40 nm thickness, 350 ± 50 nm width, and 7 µm length and the loading platform is an interdigitated electrode electrostatic actuator. The experiment is performed in a scanning electron microscope and digital image correlation is employed to measure displacements to determine stress and strain. The ultimate tensile strength of the nanocrystalline nanoscale specimen approaches 1 GPa, consistent with measurements made by other nanometer scale sample characterization methods on other material samples at the nanometer scale, as well as gold samples at the nanometer scale. The batch-compatible microfabrication method can be used to create nominally identical nanoscale specimens and boundary conditions for a broad range of materials.

11.
Nano Lett ; 12(8): 3909-14, 2012 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-22817546

RESUMO

It is commonly accepted that the addition of spherical nanoparticles (NPs) cannot simultaneously improve the elastic modulus, the yield stress, and the ductility of an amorphous glassy polymer matrix. In contrast to this conventional wisdom, we show that ductility can be substantially increased, while maintaining gains in the elastic modulus and yield stress, in glassy nanocomposite films composed of spherical silica NPs grafted with polystyrene (PS) chains in a PS matrix. The key to these improvements are (i) uniform NP spatial dispersion and (ii) strong interfacial binding between NPs and the matrix, by making the grafted chains sufficiently long relative to the matrix. Strikingly, the optimal conditions for the mechanical reinforcement of the same nanocomposite material in the melt state is completely different, requiring the presence of spatially extended NP clusters. Evidently, NP spatial dispersions that optimize material properties are crucially sensitive to the state (melt versus glass) of the polymeric material.

12.
Otol Neurotol ; 44(5): 513-519, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37026782

RESUMO

HYPOTHESIS: Microneedle-mediated intracochlear injection through the round window membrane (RWM) will facilitate intracochlear delivery, not affect hearing, and allow for full reconstitution of the RWM within 48 hours. BACKGROUND: We have developed polymeric microneedles that allow for in vivo perforation of the guinea pig RWM and aspiration of perilymph for diagnostic analysis, with full reconstitution of the RWM within 48 to 72 hours. In this study, we investigate the ability of microneedles to deliver precise volumes of therapeutics into the cochlea and assess the subsequent consequences on hearing. METHODS: Volumes of 1.0, 2.5, or 5.0 µL of artificial perilymph were injected into the cochlea at a rate of 1 µL/min. Compound action potential (CAP) and distortion product otoacoustic emission were performed to assess for hearing loss (HL), and confocal microscopy was used to evaluate the RWM for residual scarring or inflammation. To evaluate the distribution of agents within the cochlea after microneedle-mediated injection, 1.0 µL of FM 1-43 FX was injected into the cochlea, followed by whole mount cochlear dissection and confocal microscopy. RESULTS: Direct intracochlear injection of 1.0 µL of artificial perilymph in vivo , corresponding to about 20% of the scala tympani volume, was safe and did not result in HL. However, injection of 2.5 or 5.0 µL of artificial perilymph into the cochlea produced statistically significant high-frequency HL persisting 48 hours postperforation. Assessment of RWMs 48 hours after perforation revealed no inflammatory changes or residual scarring. FM 1-43 FX injection resulted in distribution of the agent predominantly in the basal and middle turns. CONCLUSION: Microneedle-mediated intracochlear delivery of small volumes relative to the volume of the scala tympani is feasible, safe, and does not cause HL in guinea pigs; however, injection of large volumes induces high-frequency HL. Injection of small volumes of a fluorescent agent across the RWM resulted in significant distribution within the basal turn, less distribution in the middle turn, and almost none in the apical turn. Microneedle-mediated intracochlear injection, along with our previously developed intracochlear aspiration, opens the pathway for precision inner ear medicine.


Assuntos
Cicatriz , Cóclea , Cobaias , Animais , Cóclea/metabolismo , Rampa do Tímpano , Compostos de Piridínio/metabolismo , Janela da Cóclea , Perilinfa/metabolismo
13.
Sci Adv ; 9(4): eade2514, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36706190

RESUMO

Despite the advancements in skin bioengineering, 3D skin constructs are still produced as flat tissues with open edges, disregarding the fully enclosed geometry of human skin. Therefore, they do not effectively cover anatomically complex body sites, e.g., hands. Here, we challenge the prevailing paradigm by engineering the skin as a fully enclosed 3D tissue that can be shaped after a body part and seamlessly transplanted as a biological clothing. Our wearable edgeless skin constructs (WESCs) show enhanced dermal extracellular matrix (ECM) deposition and mechanical properties compared to conventional constructs. WESCs display region-specific cell/ECM alignment, as well as physiologic anisotropic mechanical properties. WESCs replace the skin in full-thickness wounds of challenging body sites (e.g., mouse hindlimbs) with minimal suturing and shorter surgery time. This study provides a compelling technology that may substantially improve wound care and suggests that the recapitulation of the tissue macroanatomy can lead to enhanced biological function.


Assuntos
Bioengenharia , Matriz Extracelular , Humanos , Engenharia , Engenharia Tecidual
14.
Hear Res ; 432: 108739, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36966687

RESUMO

BACKGROUND: We have developed 3D-printed microneedle technology for diagnostic aspiration of perilymph and intracochlear delivery of therapeutic agents. Single microneedle-mediated round window membrane (RWM) perforation does not cause hearing loss, heals within 48-72 h, and yields sufficient perilymph for proteomic analysis. In this study, we investigate the anatomic, physiologic, and proteomic consequences of repeated microneedle-mediated perforations of the same RWM at different timepoints. METHODS: 100-µm-diameter hollow microneedles were fabricated using two-photon polymerization (2PP) lithography. The tympanic bullae of Hartley guinea pigs (n = 8) were opened with adequate exposure of the RWM. Distortion product otoacoustic emissions (DPOAE) and compound action potential (CAP) were recorded to assess hearing. The hollow microneedle was introduced into the bulla and the RWM was perforated; 1 µL of perilymph was aspirated from the cochlea over the course of 45 s. 72 h later, the above procedure was repeated with aspiration of an additional 1 µL of perilymph. 72 h after the second perforation, RWMs were harvested for confocal imaging. Perilymph proteomic analysis was completed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS: Two perforations and aspirations were performed in 8 guinea pigs. In six, CAP, DPOAE, and proteomic analysis were obtained; in one, only CAP and DPOAE results were obtained; and in one, only proteomics results were obtained. Hearing tests demonstrated mild hearing loss at 1-4 kHz and 28 kHz, most consistent with conductive hearing loss. Confocal microscopy demonstrated complete healing of all perforations with full reconstitution of the RWM. Perilymph proteomic analysis identified 1855 proteins across 14 samples. The inner ear protein cochlin was observed in all samples, indicating successful aspiration of perilymph. Non-adjusted paired t-tests with p < 0.01 revealed significant changes in 13 of 1855 identified proteins (0.7%) between the first and second aspirations. CONCLUSIONS: We demonstrate that repeated microneedle perforation of the RWM is feasible, allows for complete healing of the RWM, and minimally changes the proteomic expression profile. Thus, microneedle-mediated repeated aspirations in a single animal can be used to monitor the response to inner ear treatments over time.


Assuntos
Perda Auditiva , Proteômica , Animais , Cobaias , Cromatografia Líquida , Espectrometria de Massas em Tandem , Janela da Cóclea/metabolismo , Cóclea/metabolismo , Perilinfa/metabolismo , Perda Auditiva/metabolismo
15.
Macromol Biosci ; 23(7): e2300011, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36905285

RESUMO

Currently available heart valve prostheses have no growth potential, requiring children with heart valve diseases to endure multiple valve replacement surgeries with compounding risks. This study demonstrates the in vitro proof of concept of a biostable polymeric trileaflet valved conduit designed for surgical implantation and subsequent expansion via transcatheter balloon dilation to accommodate the growth of pediatric patients and delay or avoid repeated open-heart surgeries. The valved conduit is formed via dip molding using a polydimethylsiloxane-based polyurethane, a biocompatible material shown here to be capable of permanent stretching under mechanical loading. The valve leaflets are designed with an increased coaptation area to preserve valve competence at expanded diameters. Four 22 mm diameter valved conduits are tested in vitro for hydrodynamics, balloon dilated to new permanent diameters of 23.26 ± 0.38 mm, and then tested again. Upon further dilation, two valved conduits sustain leaflet tears, while the two surviving devices reach final diameters of 24.38 ± 0.19 mm. After each successful dilation, the valved conduits show increased effective orifice areas and decreased transvalvular pressure differentials while maintaining low regurgitation. These results demonstrate concept feasibility and motivate further development of a polymeric balloon-expandable device to replace valves in children and avoid reoperations.


Assuntos
Doenças das Valvas Cardíacas , Próteses Valvulares Cardíacas , Criança , Humanos , Materiais Biocompatíveis , Catéteres , Desenho de Prótese
16.
Adv Eng Mater ; 24(11)2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36686328

RESUMO

Polymeric microneedles fabricated via two-photon polymerization (2PP) lithography enable safe medical access to the inner ear. Herein, the material class for 2PP-lithography-based microneedles is expanded by pyrolyzing 2PP-fabricated polymeric microneedles, resulting in glassy carbon microneedles. During pyrolysis the microneedles shrink up to 81% while maintaining their complex shape when the exposed surface-area-to-volume ratio (SVR) is 0.025 < SVR < 0.04, for the temperature history protocol used herein. The derived glassy carbon is confirmed with energy-dispersive X-ray spectroscopy and Raman spectroscopy. The pyrolyzed glassy carbon has Young's modulus 9.0 GPa. As a brittle material, the strength is stochastic. Using the two-parameter Weibull distribution, the glassy carbon has Weibull modulus of 3.1 and characteristic strength of 710 MPa. The viscoelastic response has characteristic time scale of about 10000 s. In vitro experiments demonstrate that the glassy carbon microneedles introduce controlled perforations across the guinea pig round window membrane (RWM) from the middle ear space into the inner ear, without damaging the microneedle. The resultant controlled perforation of RWM is known to enhance diffusion of therapeutics across the RWM in a predictable fashion. Hence, the glassy carbon microneedles can be deployed for mediating inner ear delivery.

17.
J Clin Med ; 11(18)2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36143121

RESUMO

OBJECTIVES: Precision medicine for inner ear disorders has seen significant advances in recent years. However, unreliable access to the inner ear has impeded diagnostics and therapeutic delivery. The purpose of this review is to describe the development, production, and utility of novel microneedles for intracochlear access. METHODS: We summarize the current work on microneedles developed using two-photon polymerization (2PP) lithography for perforation of the round window membrane (RWM). We contextualize our findings with the existing literature in intracochlear diagnostics and delivery. RESULTS: Two-photon polymerization lithography produces microneedles capable of perforating human and guinea pig RWMs without structural or functional damage. Solid microneedles may be used to perforate guinea pig RWMs in vivo with full reconstitution of the membrane in 48-72 h, and hollow microneedles may be used to aspirate perilymph or inject therapeutics into the inner ear. Microneedles produced with two-photon templated electrodeposition (2PTE) have greater strength and biocompatibility and may be used to perforate human RWMs. CONCLUSIONS: Microneedles produced with 2PP lithography and 2PTE can safely and reliably perforate the RWM for intracochlear access. This technology is groundbreaking and enabling in the field of inner ear precision medicine.

18.
Acta Biomater ; 136: 343-362, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34563725

RESUMO

The round window membrane (RWM) covers an opening between the perilymph fluid-filled inner ear space and the air-filled middle ear space. As the only non-osseous barrier between these two spaces, the RWM is an ideal candidate for aspiration of perilymph for diagnostics purposes and delivery of medication for treatment of inner ear disorders. Routine access across the RWM requires the development of new surgical tools whose design can only be optimized with a thorough understanding of the RWM's structure and properties. The RWM possesses a layer of collagen and elastic fibers so characterization of the distribution and orientation of these fibers is essential. Confocal and two-photon microscopy were conducted on intact RWMs in a guinea pig model to characterize the distribution of collagen and elastic fibers. The fibers were imaged via second-harmonic-generation, autofluorescence, and Rhodamine B staining. Quantitative analyses of both fiber orientation and geometrical properties of the RWM uncovered a significant correlation between mean fiber orientations and directions of zero curvature in some portions of the RWM, with an even more significant correlation between the mean fiber orientations and linear distance along the RWM in a direction approximately parallel to the cochlear axis. The measured mean fiber directions and dispersions can be incorporated into a generalized structure tensor for use in the development of continuum anisotropic mechanical constitutive models that in turn will enable optimization of surgical tools to access the cochlea. STATEMENT OF SIGNIFICANCE: The Round Window Membrane (RWM) is the only non-osseous barrier separating the middle and inner ear spaces, and thus is an ideal portal for medical access to the cochlea. An understanding of RWM structure and mechanical response is necessary to optimize the design of surgical tools for this purpose. The RWM geometry and the connective fiber orientation and dispersion are measured via confocal and 2-photon microscopy. A region of the RWM geometry is characterized as a hyperbolic paraboloid and another region as a tapered parabolic cylinder. Predominant fiber directions correlate well with directions of zero curvature in the hyperbolic paraboloid region. Overall fiber directions correlate well with position along a line approximately parallel to the central axis of the cochlea's spiral.


Assuntos
Perilinfa , Janela da Cóclea , Animais , Cóclea , Cobaias , Membranas
19.
Drug Deliv Transl Res ; 11(1): 214-226, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32488817

RESUMO

Drug delivery into the inner ear is a significant challenge due to its inaccessibility as a fluid-filled cavity within the temporal bone of the skull. The round window membrane (RWM) is the only delivery portal from the middle ear to the inner ear that does not require perforation of bone. Recent advances in microneedle fabrication enable the RWM to be perforated safely with polymeric microneedles as a means to enhance the rate of drug delivery from the middle ear to the inner ear. However, the polymeric material is not biocompatible and also lacks the strength of other materials. Herein we describe the design and development of gold-coated metallic microneedles suitable for RWM perforation. When developing microneedle technology for drug delivery, we considered three important general attributes: (1) high strength and ductility material, (2) high accuracy and precision of fabrication, and (3) broad design freedom. We developed a hybrid additive manufacturing method using two-photon lithography and electrochemical deposition to fabricate ultra-sharp gold-coated copper microneedles with these attributes. We refer to the microneedle fabrication methodology as two-photon templated electrodeposition (2PTE). We demonstrate the use of these microneedles by inducing a perforation with a minimal degree of trauma in a guinea pig RWM while the microneedle itself remains undamaged. Thus, this microneedle has the potential literally of opening the RWM for enhanced drug delivery into the inner ear. Finally, the 2PTE methodology can be applied to many different classes of microneedles for other drug delivery purposes as well the fabrication of small scale structures and devices for non-medical applications. Graphical Abstract Fully metallic ultra-sharp microneedle mounted at end of a 24-gauge stainless steel blunt syringe needle tip: (left) Size of microneedle shown relative to date stamp on U.S. one-cent coin; (right) Perforation through guinea pig round window membrane introduced with microneedle.


Assuntos
Orelha Interna , Preparações Farmacêuticas , Animais , Sistemas de Liberação de Medicamentos , Cobaias , Agulhas , Janela da Cóclea
20.
Hear Res ; 400: 108141, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33307286

RESUMO

BACKGROUND: Inner ear diagnostics is limited by the inability to atraumatically obtain samples of inner ear fluid. The round window membrane (RWM) is an attractive portal for accessing perilymph samples as it has been shown to heal within one week after the introduction of microperforations. A 1 µL volume of perilymph is adequate for proteome analysis, yet the total volume of perilymph within the scala tympani of the guinea pig is limited to less than 5 µL. This study investigates the safety and reliability of a novel hollow microneedle device to aspirate perilymph samples adequate for proteomic analysis. METHODS: The guinea pig RWM was accessed via a postauricular surgical approach. 3D-printed hollow microneedles with an outer diameter of 100 µm and an inner diameter of 35 µm were used to perforate the RWM and aspirate 1 µL of perilymph. Two perilymph samples were analyzed by liquid chromatography-mass spectrometry-based quantitative proteomics as part of a preliminary study. Hearing was assessed before and after aspiration using compound action potential (CAP) and distortion product otoacoustic emissions (DPOAE). RWMs were harvested 72 h after aspiration and evaluated for healing using confocal microscopy. RESULTS: There was no permanent damage to hearing at 72 h after perforation as assessed by CAP (n = 7) and DPOAE (n = 8), and all perforations healed completely within 72 h (n = 8). In the two samples of perilymph analyzed, 620 proteins were detected, including the inner ear protein cochlin, widely recognized as a perilymph marker. CONCLUSION: Hollow microneedles can facilitate aspiration of perilymph across the RWM at a quality and volume adequate for proteomic analysis without causing permanent anatomic or physiologic dysfunction. Microneedles can mediate safe and effective intracochlear sampling and show great promise for inner ear diagnostics.


Assuntos
Perilinfa , Animais , Cobaias , Impressão Tridimensional , Proteômica , Reprodutibilidade dos Testes , Janela da Cóclea
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA