Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 126(12): 125701, 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33834816

RESUMO

We study the phase transitions of a fluid confined in a capillary slit made from two adjacent walls, each of which are a periodic composite of stripes of two different materials. For wide slits the capillary condensation occurs at a pressure which is described accurately by a combination of the Kelvin equation and the Cassie law for an averaged contact angle. However, for narrow slits the condensation occurs in two steps involving an intermediate bridging phase, with the corresponding pressures described by two new Kelvin equations. These are characterised by different contact angles due to interfacial pinning, with one larger and one smaller than the Cassie angle. We determine the triple point and predict two types of dispersion force induced Derjaguin-like corrections due to mesoscopic volume reduction and the singular free-energy contribution from nanodroplets and bubbles. We test these predictions using a fully microscopic density functional model which confirms their validity even for molecularly narrow slits. Analogous mesoscopic corrections are also predicted for two-dimensional systems arising from thermally induced interfacial wandering.

2.
Phys Rev Lett ; 124(11): 115701, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32242718

RESUMO

We study the competition between local (bridging) and global condensation of fluid in a chemically heterogeneous capillary slit made from two parallel adjacent walls each patterned with a single stripe. Using a mesoscopic modified Kelvin equation, which determines the shape of the menisci pinned at the stripe edges in the bridge phase, we determine the conditions under which the local bridging transition precedes capillary condensation as the pressure (or chemical potential) is increased. Provided the contact angle of the stripe is less than that of the outer wall we show that triple points, where evaporated, locally condensed, and globally condensed states all coexist are possible depending on the value of the aspect ratio a=L/H, where H is the stripe width and L the wall separation. In particular, for a capillary made from completely dry walls patterned with completely wet stripes the condition for the triple point occurs when the aspect ratio takes its maximum possible value 8/π. These predictions are tested using a fully microscopic classical density functional theory and shown to be remarkably accurate even for molecularly narrow slits. The qualitative differences with local and global condensation in heterogeneous cylindrical pores are also highlighted.

3.
Phys Rev E ; 100(6-1): 062802, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31962469

RESUMO

We study the structure and morphological changes of fluids that are in contact with solid composites formed by alternating and microscopically wide stripes of two different materials. One type of the stripes interacts with the fluid via long-ranged Lennard-Jones-like potential and tends to be completely wet, while the other type is purely repulsive and thus tends to be completely dry. We consider closed systems with a fixed number of particles that allows for stabilization of fluid configurations breaking the lateral symmetry of the wall potential. These include liquid morphologies corresponding to a sessile drop that is formed by a sequence of bridging transitions that connect neighboring wet regions adsorbed at the attractive stripes. We study the character of the transitions depending on the wall composition, stripes width, and system size. Using a (classical) nonlocal density functional theory (DFT), we show that the transitions between different liquid morphologies are typically weakly first-order but become rounded if the wavelength of the system is lower than a certain critical value L_{c}. We also argue that in the thermodynamic limit, i.e., for macroscopically large systems, the wall becomes wet via an infinite sequence of first-order bridging transitions that are, however, getting rapidly weaker and weaker and eventually become indistinguishable from a continuous process as the size of the bridging drop increases. Finally, we construct the global phase diagram and study the density dependence of the contact angle of the bridging drops using DFT density profiles and a simple macroscopic theory.

4.
Phys Rev E ; 100(3-1): 032801, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31640052

RESUMO

We consider a nanopatterned planar wall consisting of a periodic array of stripes of width L, which are completely wet by liquid (contact angle θ=0), separated by regions of width D which are completely dry (contact angle θ=π). Using microscopic density functional theory, we show that, in the presence of long-ranged dispersion forces, the wall-gas interface undergoes a first-order wetting transition, at bulk coexistence as the separation D is reduced to a value D_{w}∝lnL, induced by the bridging between neighboring liquid droplets. Associated with this is a line of prewetting transitions occurring off coexistence. By varying the stripe width L, we show that the prewetting line shows universal scaling behavior and data collapse. This verifies predictions based on mesoscopic models for the scaling properties associated with finite-size effects at complete wetting including the logarithmic singular contribution to the surface free energy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA