Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 160(19)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38747435

RESUMO

We explore the application of an extrapolative method that yields very accurate total and relative energies from variational and diffusion quantum Monte Carlo (VMC and DMC) results. For a trial wave function consisting of a small configuration interaction (CI) wave function obtained from full CI quantum Monte Carlo and reoptimized in the presence of a Jastrow factor and an optional backflow transformation, we find that the VMC and DMC energies are smooth functions of the sum of the squared coefficients of the initial CI wave function and that quadratic extrapolations of the non-backflow VMC and backflow DMC energies intersect within uncertainty of the exact total energy. With adequate statistical treatment of quasi-random fluctuations, the extrapolate and intersect with polynomials of order two method is shown to yield results in agreement with benchmark-quality total and relative energies for the C2, N2, CO2, and H2O molecules, as well as for the C2 molecule in its first electronic singlet excited state, using only small CI expansion sizes.

2.
J Chem Phys ; 159(1)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37409706

RESUMO

An efficient implementation for approximate inclusion of the three-body operator arising in transcorrelated methods via exclusion of explicit three-body components (xTC) is presented and tested against results in the "HEAT" benchmark set [Tajti et al., J. Chem. Phys. 121, 011599 (2004)]. Using relatively modest basis sets and computationally simple methods, total, atomization, and formation energies within near-chemical accuracy from HEAT results were obtained. The xTC ansatz reduces the nominal scaling of the three-body part of transcorrelation by two orders of magnitude to O(N5) and can readily be used with almost any quantum chemical correlation method.

3.
J Chem Phys ; 158(21)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37259997

RESUMO

We demonstrate the accuracy of ground-state energies of the transcorrelated Hamiltonian, employing sophisticated Jastrow factors obtained from variational Monte Carlo, together with the coupled cluster and distinguishable cluster methods at the level of singles and doubles excitations. Our results show that already with the cc-pVTZ basis, the transcorrelated distinguishable cluster method gets close to the complete basis limit and near full configuration interaction quality values for relative energies of over thirty atoms and molecules. To gauge the performance in different correlation regimes, we also investigate the breaking of the nitrogen molecule with transcorrelated coupled cluster methods. Numerical evidence is presented to further justify an efficient way to incorporate the major effects coming from the three-body integrals without explicitly introducing them into the amplitude equations.

4.
J Chem Phys ; 158(22)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37290083

RESUMO

We investigate the optimization of flexible tailored real-space Jastrow factors for use in the transcorrelated (TC) method in combination with highly accurate quantum chemistry methods, such as initiator full configuration interaction quantum Monte Carlo (FCIQMC). Jastrow factors obtained by minimizing the variance of the TC reference energy are found to yield better, more consistent results than those obtained by minimizing the variational energy. We compute all-electron atomization energies for the challenging first-row molecules C2, CN, N2, and O2 and find that the TC method yields chemically accurate results using only the cc-pVTZ basis set, roughly matching the accuracy of non-TC calculations with the much larger cc-pV5Z basis set. We also investigate an approximation in which pure three-body excitations are neglected from the TC-FCIQMC dynamics, saving storage and computational costs, and show that it affects relative energies negligibly. Our results demonstrate that the combination of tailored real-space Jastrow factors with the multi-configurational TC-FCIQMC method provides a route to obtaining chemical accuracy using modest basis sets, obviating the need for basis-set extrapolation and composite techniques.


Assuntos
Elétrons , Método de Monte Carlo
5.
Phys Rev Lett ; 120(17): 177701, 2018 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-29756819

RESUMO

We report quantum Monte Carlo evidence of the existence of large gap superfluidity in electron-hole double layers over wide density ranges. The superfluid parameters evolve from normal state to BEC with decreasing density, with the BCS state restricted to a tiny range of densities due to the strong screening of Coulomb interactions, which causes the gap to rapidly become large near the onset of superfluidity. The superfluid properties exhibit similarities to ultracold fermions and iron-based superconductors, suggesting an underlying universal behavior of BCS-BEC crossovers in pairing systems.

6.
Phys Rev Lett ; 120(25): 255701, 2018 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-29979086

RESUMO

A new phase V of hydrogen was recently claimed in experiments above 325 GPa and 300 K. Because of the extremely small sample size at such record pressures the measurements were limited to Raman spectroscopy. The experimental data on increase of pressure show decreasing Raman activity and darkening of the sample, which suggests band gap closure and impending molecular dissociation, but no definite conclusions could be reached. Furthermore, the available data are insufficient to determine the structure of phase V, which remains unknown. Introducing saddle-point ab initio random structure searching, we find several new structural candidates of hydrogen which could describe the observed properties of phase V. We investigate hydrogen metallization in the proposed candidate structures, and demonstrate that smaller band gaps are associated with longer bond lengths. We conclude that phase V is a stepping stone towards metallization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA