Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Int J Environ Health Res ; : 1-16, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38576268

RESUMO

Salmonella enterica is known for its disease-causing serotypes, including Montevideo and Pomona. These serotypes have been found in various environments, including river water, sediments, food, and animals. However, the global spread of these serotypes has increased, leading to many reported infections and outbreaks. The goal of this study was the genomic analysis of 48 strains of S. Montevideo and S. Pomona isolated from different sources, including clinical. Results showed that environmental strains carried more antibiotic resistance genes than the clinical strains, such as genes for resistance to aminoglycosides, chloramphenicol, and sulfonamides. Additionally, the type 4 secretion system, was only found in environmental strains. .Also many phosphotransferase transport systems were identified and the presence of genes for the alternative pathway Entner-Doudoroff. The origin of isolation may have a significant impact on the ability of Salmonella isolates to adapt and survive in different environments, leading to genomic flexibility and a selection advantage.

2.
Curr Microbiol ; 79(12): 385, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329340

RESUMO

Mosquito-borne diseases such as malaria and dengue are global severe public health threats. Due to the lack of efficient control methods, alternative approaches to decreasing arboviral transmitted diseases are prioritized to reduce morbidity and mortality in every endemic region. Mosquito midgut bacteria play an essential role in physiological development, fitness, and the arthropods´ vectorial capacity. Bacteriophages are viruses that infect bacteria and are considered a promising biocontrol method by eliminating midgut microbiota that plays an essential role in mosquitoes´ health. Here, we isolate and identify 22 bacteria from mosquito´s midgut belonging to the genera Mesobacillus, Enterobacter, Klebsiella, Microbacterium, Micrococcus, Pantoea, Serratia, and Staphylococcus, mainly. Twelve phages with lytic activity against Enterobacter, Klebsiella, and Pantoea were also isolated. All 12 phages showed a double-stranded DNA genome, ranging from 36,790 to 149,913 bp, and were taxonomically classified as members of the Drexlerviridae family, Molineuxvirinae, Studiervirinae, and Vequintavirinae subfamilies. Open reading frames associated with phage structure, packing, host lysis, DNA metabolism, and additional functions were predicted in all 12 phage genomes, while tRNAs were predicted in five phage genomes. In addition, the life cycle was predicted as virulent for the 12 phages, and no antibiotic resistance, virulence, allergenic, or lysogenic genes were found in either genome. These findings suggest that the 12 phages have biocontrol potentials; however, it is necessary to elucidate specific bacterial host's roles and then the phages' ability to serve as effective vector control.


Assuntos
Aedes , Bacteriófagos , Pantoea , Animais , Bacteriófagos/genética , Aedes/microbiologia , Mosquitos Vetores , Genômica
3.
Int J Environ Health Res ; 32(5): 1155-1163, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33251827

RESUMO

Salmonella in the environment have evolved genetically to maintain a stable cell metabolism. Nevertheless, a lack of common nutrients (such as glucose) causes these strains to metabolize alternative carbon sources. In this study, 21 strains of Salmonella Oranienburg isolated from subtropical river water were evaluated to compare their adaptation and preconditioning abilities for the consumption of environmental carbon sources (ECS). The results obtained in this study attributed important biological characteristics to the adaptation of the metabolism of Salmonella strains to diverse ECS; these characteristics include but are not limited to variations in plasticity and natural preconditioning in closely related microorganisms, such as environmental isolates belonging to the serotype Oranienburg.


Assuntos
Rios , Salmonella , Carbono , Salmonella/genética , Sorogrupo , Água
4.
Int J Environ Health Res ; 32(7): 1529-1541, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33706620

RESUMO

The survival of Salmonella in subtropical river water depends on genetic and metabolic reorganization for the expression of alternative metabolic pathways in response to starvation, which allows Salmonella to use environmental carbon sources (C-sources). However, knowledge regarding the metabolic plasticity of Salmonella serotypes for C-source utilization when exposed to these conditions remains unclear. The aim of this study was to evaluate the metabolic response and level of environmental C-source consumption by environmental Salmonella (Oranienburg and Saintpaul) and clinical Salmonella (Typhi) serotypes by comparing laboratory growth against exposure to river water conditions. Metabolic characterization was performed using a Biolog® EcoPlateTM containing 31 C-sources. The results obtained under laboratory growth conditions showed that environmental serotypes used 74.1% of the C-sources, whereas the clinical serotype used 45.1%. In contrast, in river water, all strains used up to 96.7% of the C-sources. Salmonella exposure to river water increases its capacity to use environmental C-sources.


Assuntos
Salmonella enterica , Carbono , Rios , Salmonella/genética , Salmonella enterica/genética , Água
5.
Curr Microbiol ; 77(12): 3851-3860, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32959087

RESUMO

Acute hepatopancreatic necrosis disease (AHPND) is a severe disease affecting recently stocked cultured shrimps. The disease is mainly caused by V. parahaemolyticus that harbors the pVA1 plasmid; this plasmid contains the pirA and pirB genes, which encode a delta-endotoxin. AHPND originated in China in 2009 and has since spread to several other Asian countries and recently to Latin America (2013). Many Asian strains have been sequenced, and their sequences are publicly accessible in scientific databases, but only four strains from Latin America have been reported. In this study, we analyzed nine pVA1-harboring V. parahaemolyticus sequences from strains isolated in Mexico along with the 38 previously available pVA1-harboring V. parahaemolyticus sequences and the reference strain RIMD 2210633. The studied sequences were clustered into three phylogenetic clades (Latin American, Malaysian, and Cosmopolitan) through pangenomic and phylogenomic analysis. The nucleotide sequence alignment of the pVA1 plasmids harbored by the Asian and Latin American strains confirmed that the main structural difference in the plasmid between the Asian and Latin American strains is the absence of the Tn3 transposon in the Asian strains; in addition, some deletions in the pirAB region were found in two of the Latin American strains. Our study represents the most robust and inclusive phylogenomic analysis of pVA1-harboring V. parahaemolyticus conducted to date and provides insight into the epidemiology of AHPND. In addition, this study highlights that disease diagnosis through the detection of the pirA and pirB genes is an inadequate approach due to the instability of these genes.


Assuntos
Penaeidae , Vibrio parahaemolyticus , Animais , China , América Latina , México , Necrose , Filogenia , Vibrio parahaemolyticus/genética
6.
Viruses ; 15(11)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38005903

RESUMO

OBJECTIVE: The aim of this work was to analyze the metadata of the SARS-CoV-2 sequences obtained from samples collected in Mexico from 2020 to 2022. MATERIALS AND METHODS: Metadata of SARS-CoV-2 sequences from samples collected in Mexico up to 31 December 2022 was retrieved from GISAID and manually cured for interpretation. RESULTS: As of December 2022, Mexican health authorities and the scientific community have sequenced up to 81,983 SARS-CoV-2 viral genomes deposited in GISAID, representing 1.1% of confirmed cases. The number of sequences obtained per state corresponded to the gross domestic product (GDP) of each state for the first (Mexico City) and the last (Tlaxcala). Approximately 25% of the sequences were obtained from CoViGen-Mex, an interdisciplinary initiative of health and scientific institutions to collect and sequence samples nationwide. The metadata showed a clear dominance of sequences retrieved by women. A similar variant distribution over time was found in Mexico and overseas, with the Omicron variant predominating. Finally, the age group with the highest representation in the sequences was adults aged 21 to 50 years, accounting for more than 50% of the total. CONCLUSIONS: Mexico presents diverse sociodemographic and economic characteristics. The COVID-19 pandemic has been and continues to be a challenge for collaboration across the country and around the world.


Assuntos
COVID-19 , SARS-CoV-2 , Adulto , Feminino , Humanos , SARS-CoV-2/genética , México/epidemiologia , Pandemias , COVID-19/epidemiologia , Genômica , China
7.
Virus Res ; 312: 198719, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35219760

RESUMO

Acute hepatopancreatic necrosis disease (AHPND) is a life-threatening disease to recently stocked shrimp. This disease is mainly caused by Vibrio parahaemolyticus and, to date, it has not been effectively controlled. Bacteriophages are a promising method to control bacterial diseases in aquaculture and multiple phages that infect Asian strains of V. parahaemolyticus have been described. However, few studies have characterized the bacteriophages that infect Latin American strains. Here, two lytic Vibrio phages (vB_VpaP_AL-1 and vB_VpaS_AL-2) were isolated from estuary water in Sinaloa, Mexico. The host ranges were tested using ten AHPND-causing strains isolated from Mexico and phage AL-1 was able to infect two strains while AL-2 infected four. One-step growth curve showed that AL-1 produced 85 PFU/cell and AL-2 produced 68 PFU/cell in 30 and 40 min, respectively. Both phages were able to tolerate temperatures ranging from 20 to 50 °C and pH values ranging from 4 to 10. Phages AL-1 and AL-2 have double-stranded DNA genomes of 42,854 bp and 58,457 bp, respectively. In total, 53 putative ORFs associated with the phage structure, packing, host lysis, DNA metabolism, and additional functions were predicted in the AL-1 genome, while 92 ORFs associated with the same functions as the AL-1 and 1 tRNA were predicted in the AL-2 genome. The lifecycle was classified as virulent for both phages. Morphology, phylogeny, and comparative genomic analyses assigned phage AL-1 as a new member of the genus Maculvirus in the Autographiviridae family, and phage AL-2 as a new member of the Siphoviridae family. These findings suggest that vB_VpaP_AL-1 and vB_VpaS_AL-2 are potential biocontrol agents against AHPND-causing V. parahaemolyticus from Mexico.


Assuntos
Bacteriófagos , Vibrio parahaemolyticus , Efrina-A5/genética , Genoma Viral , Genômica , Humanos , Necrose/genética , Vibrio parahaemolyticus/genética
8.
Microorganisms ; 10(6)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35744732

RESUMO

Salmonella enterica is a leading cause of human gastrointestinal disease worldwide. Given that Salmonella is persistent in aquatic environments, this study examined the prevalence, levels and genotypic diversity of Salmonella isolates recovered from major rivers in an important agricultural region in northwestern Mexico. During a 13-month period, a total of 143 river water samples were collected and subjected to size-exclusion ultrafiltration, followed by enrichment, and selective media for Salmonella isolation and quantitation. The recovered Salmonella isolates were examined by next-generation sequencing for genome characterization. Salmonella prevalence in river water was lower in the winter months (0.65 MPN/100 mL) and significantly higher in the summer months (13.98 MPN/100 mL), and a Poisson regression model indicated a negative effect of pH and salinity and a positive effect of river water temperature (p = 0.00) on Salmonella levels. Molecular subtyping revealed Oranienburg, Anatum and Saintpaul were the most predominant Salmonella serovars. Single nucleotide polymorphism (SNP)-based phylogeny revealed that the detected 27 distinct serovars from river water clustered in two major clades. Multiple nonsynonymous SNPs were detected in stiA, sivH, and ratA, genes required for Salmonella fitness and survival, and these findings identified relevant markers to potentially develop improved methods for characterizing this pathogen.

9.
Can J Microbiol ; 57(12): 1042-51, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22145760

RESUMO

Four phages isolated from cattle and poultry feces were analyzed for their ability to lyse Salmonella serotypes and Escherichia coli O157:H7. The phage one-step growth curves, morphology, and genetic characteristics were determined. All phages showed a lytic effect on various Salmonella serotypes and E. coli O157:H7, which lysed at least 70% of the 234 strains tested. The phages had latent periods ranging from 10 to 15 min and generation times of 30 to 45 min, while burst size fluctuated between 154 and 426 PFU/cell. Phages morphology showed isometric and elongated heads and rigid contractile tails, consistent with morphology of the Myoviridae family. Phages' DNA dendrograms showed a distinctive RFLP when digested by HindIII and EcoRV, and SDS-PAGE profile showed distinctive proteins expression as well. In vitro phage challenge showed a total reduction of E. coli O157:H7, Salmonella Typhimurium and Saintpaul counts at 2 h, whereas for Salmonella Montevideo a reduction and retardation growth, at a multiplicity of infection (MOI) of 100, was observed; however, under a MOI of 10 000, no viable cells were detected after 4 h. The wide host ranges of these phages suggested they could be used for simultaneous biocontrol of some Salmonella serotypes and E. coli O157:H7.


Assuntos
Bacteriófagos/fisiologia , Escherichia coli O157/virologia , Salmonella/virologia , Animais , Bacteriófagos/genética , Bacteriófagos/crescimento & desenvolvimento , Bacteriófagos/isolamento & purificação , Bacteriófagos/ultraestrutura , Bovinos , Enzimas de Restrição do DNA , DNA Viral/genética , Fezes/virologia , Especificidade de Hospedeiro/fisiologia , Polimorfismo de Fragmento de Restrição , Aves Domésticas/virologia
10.
Antibiotics (Basel) ; 10(10)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34680731

RESUMO

Biofilm formation by E. coli is a serious threat to meat processing plants. Chemical disinfectants often fail to eliminate biofilms; thus, bacteriophages are a promising alternative to solve this problem, since they are widely distributed, environmentally friendly, and nontoxic to humans. In this study, the biofilm formation of 10 E. coli strains isolated from the meat industry and E. coli ATCC BAA-1430 and ATCC 11303 were evaluated. Three strains, isolated from the meat contact surfaces, showed adhesion ability and produced extracellular polymeric substances. Biofilms of these three strains were developed onto stainless steel (SS) surfaces and enumerated at 2, 12, 24, 48, and 120 h, and were visualized by scanning electron microscopy. Subsequently, three bacteriophages showing podovirus morphology were isolated from ground beef and poultry liver samples, which showed lytic activity against the abovementioned biofilm-forming strains. SS surfaces with biofilms of 2, 14, and 48 h maturity were treated with mixed and individual bacteriophages at 8 and 9 log10 PFU/mL for 1 h. The results showed reductions greater than 6 log10 CFU/cm2 as a result of exposing SS surfaces with biofilms of 24 h maturity to 9 log10 PFU/mL of bacteriophages; however, the E. coli and bacteriophage strains, phage concentration, and biofilm development stage had significant effects on biofilm reduction (p < 0.05). In conclusion, the isolated bacteriophages showed effectiveness at reducing biofilms of isolated E. coli; however, it is necessary to increase the libraries of phages with lytic activity against the strains isolated from production environments.

11.
J Microbiol Biotechnol ; 27(2): 234-241, 2017 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-27794587

RESUMO

Potato peels (PP) contain several bioactive compounds. These compounds are known to provide human health benefits, including antioxidant and antimicrobial properties. In addition, these compounds could have effects on human enteric viruses that have not yet been reported. The objective of the present study was to evaluate the phenolic composition, antioxidant properties in the acidified ethanol extract (AEE) and water extract of PP, and the antiviral effects on the inhibition of Av-05 and MS2 bacteriophages, which were used as human enteric viral surrogates. The AEE showed the highest phenolic content and antioxidant activity. Chlorogenic and caffeic acids were the major phenolic acids. In vitro analysis indicated that PP had a strong antioxidant activity. A 3 h incubation with AEE at a concentration of 5 mg/ml was needed to reduce the PFU/ml (plaque-forming unit per unit volume) of Av-05 and MS2 by 2.8 and 3.9 log10, respectively, in a dose-dependent manner. Our data suggest that PP has potential to be a source of natural antioxidants against enteric viruses.


Assuntos
Bacteriófagos/efeitos dos fármacos , Levivirus/efeitos dos fármacos , Fenóis/análise , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Solanum tuberosum/química , Antioxidantes/farmacologia , Antivirais/química , Antivirais/farmacologia , Ácidos Cafeicos/análise , Ácido Clorogênico/análise , Cromatografia Líquida de Alta Pressão , Escherichia coli/virologia , Flavonoides/análise , Humanos , Concentração de Íons de Hidrogênio , Oxirredução
12.
Genome Announc ; 3(3)2015 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-26067947

RESUMO

Lytic bacteriophages have reemerged as an alternative for the control of pathogenic bacteria. However, the effective use of phage relies on appropriate genomic characterization. In this study, we report the genome of bacteriophage Av-05 and its sequence analysis, which has strong lytic activity against Escherichia coli O157:H7 strains and several Salmonella serotypes. The analysis revealed that the phage Av-05 genome consists of 120,938 bp, containing 209 putative open reading frames (ORFs) and 9 tRNAs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA