Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37964898

RESUMO

Magnetic fluctuations is the leading candidate for pairing in cuprate, iron-based, and heavy fermion superconductors. This view is challenged by the recent discovery of nodeless superconductivity in CeCu2Si2, and calls for a detailed understanding of the corresponding magnetic fluctuations. Here, we mapped out the magnetic excitations in superconducting (S-type) CeCu2Si2 using inelastic neutron scattering, finding a strongly asymmetric dispersion for E≲1.5meV, which at higher energies evolves into broad columnar magnetic excitations that extend to E≳5meV. While low-energy magnetic excitations exhibit marked three-dimensional characteristics, the high-energy magnetic excitations in CeCu2Si2 are almost two-dimensional, reminiscent of paramagnons found in cuprate and iron-based superconductors. By comparing our experimental findings with calculations in the random-phase approximation,we find that the magnetic excitations in CeCu2Si2 arise from quasiparticles associated with its heavy electron band, which are also responsible for superconductivity. Our results provide a basis for understanding magnetism and superconductivity in CeCu2Si2, and demonstrate the utility of neutron scattering in probing band renormalization in heavy fermion metals.

2.
Sci Rep ; 5: 7968, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25608949

RESUMO

Identifying the nature of magnetism, itinerant or localized, remains a major challenge in condensed-matter science. Purely localized moments appear only in magnetic insulators, whereas itinerant moments more or less co-exist with localized moments in metallic compounds such as the doped-cuprate or the iron-based superconductors, hampering a thorough understanding of the role of magnetism in phenomena like superconductivity or magnetoresistance. Here we distinguish two antiferromagnetic modulations with respective propagation wave vectors at Q± = (H ± 0.557(1), 0, L ± 0.150(1)) and QC = (H ± 0.564(1), 0, L), where (H, L) are allowed Miller indices, in an ErPd2Si2 single crystal by neutron scattering and establish their respective temperature- and field-dependent phase diagrams. The modulations can co-exist but also compete depending on temperature or applied field strength. They couple differently with the underlying lattice albeit with associated moments in a common direction. The Q± modulation may be attributed to localized 4f moments while the QC correlates well with itinerant conduction bands, supported by our transport studies. Hence, ErPd2Si2 represents a new model compound that displays clearly-separated itinerant and localized moments, substantiating early theoretical predictions and providing a unique platform allowing the study of itinerant electron behavior in a localized antiferromagnetic matrix.

3.
Nat Mater ; 2(1): 33-7, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12652670

RESUMO

Single-phase nanocrystalline materials undergo inhomogeneous plastic deformation under loading at room temperature, which results in a very limited plastic strain (smaller than 0-3%). The materials therefore display low ductility, leading to catastrophic failure, which severely restricts their application. Here, we present a new in situ-formed nanostructured matrix/ductile dendritic phase composite microstructure for Ti-base alloys, which exhibits up to 14.5% compressive plastic strain at room temperature. The new composite microstructure was synthesized on the basis of the appropriate choice of composition, and by using well-controlled solidification conditions. Deformation occurs partially through dislocation movement in dendrites, and partially through a shear-banding mechanism in the nanostructured matrix. The dendrites act as obstacles restricting the excessive deformation by isolating the highly localized shear bands in small, discrete interdendritic regions, and contribute to the plasticity. We suggest that microscale ductile crystalline phases might therefore be used to toughen nanostructured materials.


Assuntos
Ligas/química , Nanotecnologia/métodos , Titânio/química , Força Compressiva , Elasticidade , Mecânica , Microscopia Eletrônica de Varredura , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA