Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
MycoKeys ; 101: 81-94, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38250087

RESUMO

During our ongoing survey of basidiomycetous yeasts associated with plant leaves in virgin forest, five Colacogloea strains were isolated in the Baotianman Nature Reserve, Henan Province, central China. Phenotypes from cultures and a phylogeny based on the internal transcribed spacer (ITS) regions and the D1/D2 domains of the large subunit (LSU) rRNA gene were employed to characterize and identify these isolates. As a result, two new species, namely Colacogloeaceltidissp. nov. and C.pararetinophilasp. nov., are introduced herein. In the phylogeny of combined ITS and LSU dataset, the new species C.celtidissp. nov. formed a clade with the unpublished Colacogloea strain (KBP: Y-6832), and together these formed the sister group to C.armeniacae, while C.pararetinophilasp. nov. was retrieved as a sister to C.retinophila. A detailed description and illustration of both new species, as well as the differences between them and their closest relatives in the genus are provided. Results from the present study will add to our knowledge of the biodiversity of Colacogloea in China.

2.
Front Microbiol ; 15: 1287984, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38380097

RESUMO

The genus Erythrobasidium is kind of species-scarce and undersampling basidiomycetes. Currently, only six species have been accepted into the genus and the diversity still remains incompletely understood. In this study, five Erythrobasidium strains were isolated in the surface of plant leaves collected from the Baotianman Nature Reserve, Henan Province, central China. Phylogenetic analyses of the small ribosomal subunit (SSU) rRNA gene, the internal transcribed spacer (ITS) region, the D1/D2 domain of the large subunit (LSU) rRNA gene, and the translation elongation factor 1-α (TEF1-α) gene coupled with morphological studies were employed to characterize and identify these isolates. As a result of these, two new species, namely E. turpiniae sp. nov. and E. nanyangense sp. nov., were delimited and proposed based on morphological and molecular evidence. A detailed description and illustration of both new species, as well as their differences with the close relatives in the genus are provided. An identification key for Erythrobasidium species is also provided. This study provides further insights into our understanding of Erythrobasidium species.

3.
Biotechnol Biofuels Bioprod ; 17(1): 44, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500189

RESUMO

2,5-Dimethylpyrazine (2,5-DMP) is important pharmaceutical raw material and food flavoring agent. Recently, engineering microbes to produce 2,5-DMP has become an attractive alternative to chemical synthesis approach. In this study, metabolic engineering strategies were used to optimize the modified Escherichia coli BL21 (DE3) strain for efficient synthesis of 2,5-DMP using L-threonine dehydrogenase (EcTDH) from Escherichia coli BL21, NADH oxidase (EhNOX) from Enterococcus hirae, aminoacetone oxidase (ScAAO) from Streptococcus cristatus and L-threonine transporter protein (EcSstT) from Escherichia coli BL21, respectively. We further optimized the reaction conditions for synthesizing 2,5-DMP. In optimized conditions, the modified strain can convert L-threonine to obtain 2,5-DMP with a yield of 2897.30 mg/L. Therefore, the strategies used in this study contribute to the development of high-level cell factories for 2,5-DMP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA