Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomacromolecules ; 24(4): 1617-1626, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36944137

RESUMO

Human placenta is a source of extracellular matrix for tissue engineering. In this study, placenta powder (PP), made from decellularized human placenta, was physically incorporated into synthetic poly(ethylene glycol) (PEG)-based hydrogels via UV-initiated thiol-ene coupling (TEC). The PP-incorporated PEG hydrogels (MoDPEG+) showed tunable storage moduli ranging from 1080 ± 290 to 51,400 ± 200 Pa. The addition of PP (1, 4, or 8 wt %) within the PEG hydrogels increased the storage moduli, with the 8 wt % PP hydrogels showing the highest storage moduli. PP reduced the swelling ratios compared with the pristine hydrogels (MoDPEG). All hydrogels showed good biocompatibility in vitro toward human skin cells and murine macrophages, with cell viability above 91%. Importantly, cells could adhere and proliferate on MoDPEG+ hydrogels due to the bioactive PP, while MoDPEG hydrogels were bio-inert as cells moved away from the hydrogel or were distributed in a large cluster on the hydrogel surface. To showcase their potential use in application-driven research, the MoDPEG+ hydrogels were straightforwardly (i) 3D printed using the SLA technique and (ii) produced via high-energy visible light (HEV-TEC) to populate damaged soft-tissue or bone cavities. Taking advantage of the bioactivity of PP and the tunable physicochemical properties of the synthetic PEG hydrogels, the presented MoDPEG+ hydrogels show great promise for tissue regeneration.


Assuntos
Compostos de Sulfidrila , Engenharia Tecidual , Humanos , Animais , Camundongos , Engenharia Tecidual/métodos , Pós , Alicerces Teciduais/química , Materiais Biocompatíveis/farmacologia , Polietilenoglicóis/química , Hidrogéis/farmacologia , Hidrogéis/química
2.
J Am Chem Soc ; 143(41): 17180-17190, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34636555

RESUMO

Infections caused by antibiotic-resistant bacteria are globally a major threat, leading to high mortality rates and increased economic burden. Novel treatment strategies are therefore urgently needed by healthcare providers to protect people. Biomaterials that have inherent antibacterial properties and do not require the use of antibiotics present an attractive and feasible avenue to achieve this goal. Herein, we demonstrate the effect of a new class of cationic hydrogels based on amino-functional hyperbranched dendritic-linear-dendritic copolymers (HBDLDs) exhibiting excellent antimicrobial activity toward a wide range of clinical Gram-positive and Gram-negative bacteria, including drug-resistant strains isolated from wounds. Intriguingly, the hydrogels can induce the expression of the antimicrobial peptides RNase 7 and psoriasin, promoting host-mediated bacterial killing in human keratinocytes (HaCaT). Moreover, treatment with the hydrogels decreased the proinflammatory cytokine IL-1ß, reactive nitrogen species (NO), and mitochondrial reactive oxygen species (ROS) in S. aureus-infected HaCaT cells, conjunctively resulting in reduced inflammation.


Assuntos
Staphylococcus aureus
3.
Macromol Biosci ; 23(4): e2200433, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36639138

RESUMO

Antimicrobial peptides (AMPs) are promising antibacterial agents in the fight against multidrug resistant pathogens. However, their application to skin infections is limited by the absence of a realizable topical delivery strategy. Herein, a hybrid hierarchical delivery system for topical delivery of AMPs is accomplished through the incorporation of AMPs into dendritic nanogels (DNGs) and their subsequent embedding into poloxamer gel. The high level of control over the crosslink density and the number of chosen functionalities makes DNGs ideal capsules with tunable loading capacity for DPK-060, a human kininogen-derived AMP. Once embedded into the poloxamer gel, DPK-060 encapsulated in DNGs displays a slower release rate compared to those entrapped directly in the gels. In vitro EpiDerm Skin Irritation Tests show good biocompatibility, while MIC and time-kill curves reveal the potency of the peptide toward Staphylococcus aureus. Anti-infection tests on ex vivo pig skin and in vivo mouse infection models demonstrate that formulations with 0.5% and 1% AMPs significantly inhibit the growth of S. aureus. Similar outcomes are observed for an in vivo mouse surgical site infection model. Importantly, when normalizing the bacteria inhibition to released/free DPK-060 at the wound site, all formulations display superior efficacy compared to DPK-060 in solution.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Peptídeos Antimicrobianos , Camundongos , Humanos , Animais , Suínos , Nanogéis , Peptídeos Catiônicos Antimicrobianos/farmacologia , Staphylococcus aureus , Poloxâmero , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Géis , Testes de Sensibilidade Microbiana
4.
Polymers (Basel) ; 13(13)2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34206872

RESUMO

Due to its unique properties resembling living tissues, hydrogels are attractive carriers for the localized and targeted delivery of various drugs. Drug release kinetics from hydrogels are commonly controlled by network properties and the drug-network interactions. However, and simultaneously, the programmable delivery of multiple drugs with opposing properties (hydrophilicity, molecular weight, etc.) from hydrogels with determined network properties is still challenging. Herein, we describe the preparation of injectable self-healing hyaluronic acid (HA) hydrogels that release hydrophobic simvastatin and hydrophilic aminobisphosphonate (BP) drugs independently in response to acidic and thiol-containing microenvironments, respectively. We apply a prodrug strategy to BP by conjugating it to HA via a self-immolative disulfide linker that is stable in the blood plasma and is cleavable in the cytoplasm. Moreover, we utilize HA-linked BP ligands to reversibly bind Ca2+ ions and form coordination hydrogels. Hydrazone coupling of hydrophobic ligands to HA permits the encapsulation of simvastatin molecules in the resulting amphiphilic HA derivative and the subsequent acid-triggered release of the drug. The conjugation of BP and hydrophobic ligands to HA enables preparation of both bulk self-healing hydrogels and nanogels. Moreover, the developed hydrogel system is shown to be multi-responsive by applying orthogonally cleavable linkers. The presented hydrogel is a potential candidate for the combination treatment of osteoporosis and bone cancers as well as for bone tissue regeneration since it can deliver bone anabolic and anti-catabolic agents in response to bone diseases microenvironments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA