Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36614044

RESUMO

Nanoparticles (NPs) coated with hyaluronic acid (HA) seem to be increasingly promising for targeted therapy due to HA chemical versatility, which allows them to bind drugs of different natures, and their affinity with the transmembrane receptor CD-44, overexpressed in tumor cells. However, an essential aspect for clinical use of NPs is formulation stability over time. For these reasons, analytical techniques capable of characterizing their physico-chemical properties are needed. In this work, poly(lactide-co-glycolide) (PLGA) NPs with an average diameter of 100-150 nm, coated with a few 10 s of nm of HA, were synthesized. For stability characterization, two complementary investigative techniques were used: Dynamic Light Scattering (DLS) and Surface-Enhanced Raman Scattering (SERS) spectroscopy. The first technique provided information on size, polidispersity index, and zeta-potential, and the second provided a deeper insight on the NP surface chemicals, allowing distinguishing of HA-coated NPs from uncoated ones. Furthermore, in order to estimate formulation stability over time, NPs were measured and monitored for two weeks. SERS results showed a progressive decrease in the signal associated with HA, which, however, is not detectable by the DLS measurements.


Assuntos
Nanopartículas , Análise Espectral Raman , Ácido Hialurônico/química , Nanopartículas/química , Portadores de Fármacos
2.
Nature ; 439(7074): 298-302, 2006 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-16421564

RESUMO

The stability and spontaneous decay of naturally occurring atomic nuclei have been much studied ever since Becquerel discovered natural radioactivity in 1896. In 1960, proton-rich nuclei with an odd or an even atomic number Z were predicted to decay through one- and two-proton radioactivity, respectively. The experimental observation of one-proton radioactivity was first reported in 1982, and two-proton radioactivity has now also been detected by experimentally studying the decay properties of 45Fe (refs 3, 4) and 54Zn (ref. 5). Here we report proton-proton correlations observed during the radioactive decay of a spinning long-lived state of the lightest known isotope of silver, 94Ag, which is known to undergo one-proton decay. We infer from these correlations that the long-lived state must also decay through simultaneous two-proton emission, making 94Ag the first nucleus to exhibit one- as well as two-proton radioactivity. We attribute the two-proton emission behaviour and the unexpectedly large probability for this decay mechanism to a very large deformation of the parent nucleus into a prolate (cigar-like) shape, which facilitates emission of protons either from the same or from opposite ends of the 'cigar'.

3.
Front Bioeng Biotechnol ; 10: 969004, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091449

RESUMO

The microenvironment of breast cancer actively participates in tumorigenesis and cancer progression. The changes observed in the architecture of the extracellular matrix initiate an oncogene-mediated cell reprogramming, that leads to a massive triggering of YAP nuclear entry, and, therefore, to cancer cell proliferation, invasion and probably to increased radiation-resistance. However, it is not yet fully understood how radiotherapy regulates the expression and subcellular localization of YAP in breast cancer cells experiencing different microenvironmental stiffnesses. To elucidate the role of extracellular matrix stiffness and ionizing radiations on YAP regulation, we explored the behaviour of two different mammary cell lines, a normal epithelial cell line (MCF10A) and a highly aggressive and invasive adenocarcinoma cell line (MDA-MB-231) interacting with polyacrylamide substrates mimicking the mechanics of both normal and tumour tissues (∼1 and ∼13 kPa). We report that X-ray radiation affected in a significant way the levels of YAP expression, density, and localization in both cell lines. After 24 h, MCF10A and MDA-MB-231 increased the expression level of YAP in both nucleus and cytoplasm in a dose dependent manner and particularly on the stiffer substrates. After 72 h, MCF10A reduced mostly the YAP expression in the cytoplasm, whereas it remained high in the nucleus of cells on stiffer substrates. Tumour cells continued to exhibit higher levels of YAP expression, especially in the cytoplasmic compartment, as indicated by the reduction of nuclear/cytoplasmic ratio of total YAP. Then, we investigated the existence of a correlation between YAP localization and the expression of the nuclear envelope protein lamin A/C, considering its key role in modulating nuclear deformability and changes in YAP shuttling phenomena. As supposed, we found that the effects of radiation on YAP nucleus/cytoplasmic expression ratio, increasing in healthy cells and decreasing in tumour ones, were accompanied by lower and higher lamin A/C levels in MCF10A and MDA-MB-231 cells, respectively. These findings point to obtain a deeper knowledge of the role of the extracellular matrix and the effects of X-rays on YAP and lamin A/C expression that can be used in the design of doses and timing of radiation therapy.

4.
Life (Basel) ; 12(2)2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35207532

RESUMO

The lockdown restrictions, as a first solution to contain the spread of the COVID-19 pandemic, have affected everyone's life and habits, including the time spent at home. The latter factor has drawn attention to indoor air quality and the impact on human health, particularly for chemical pollutants. This study investigated how the increasing time indoor influenced exposure to natural radioactive substances, such as radon gas. To calculate the radiological risk, we considered the most consolidated indices used for radiation protection: annual effective dose, excess lifetime cancer risk, and the lung cancer case. Furthermore, two different exposure times were considered: pre-lockdown and post-lockdown. The lockdown increased the indoor exposure time by 4% and, consequently, the radiological risk factors by 9%. Furthermore, the reference value of 300 Bq/m3, considered acceptable for human radiation protection, may need to be lowered further in the case of conditions similar to those of the lockdown period.

5.
Artigo em Inglês | MEDLINE | ID: mdl-34769732

RESUMO

In this paper, an in-depth and systematic study of the radiological characterization of three types of Puglia region natural limestones (Pietra Leccese, Pietra Mazzara and Carparo) was carried out. The investigation was performed by XRF spectroscopy for a chemical analysis, and gamma spectroscopy of the specific activity concentration of natural radionuclides 226Ra, 232Th, and 40K. Although the limestone does not fall within the category included by Italian Legislative Decree 101/2020, the gamma index was calculated using the results of the gamma spectroscopy measurements. For Pietra Mazzara and Carparo stones, the gamma index was found to be less than the reference value; conversely Pietra Leccese was found to be higher. To obtain a more complete evaluation of the external exposure, radium equivalent activity and external radiation hazard were calculated for all analyzed stones. The results suggest the need to broadly consider the radiological risk for these stones, and for limestone more generally, when used as a building material.


Assuntos
Monitoramento de Radiação , Proteção Radiológica , Rádio (Elemento) , Radiação de Fundo , Materiais de Construção , Radioisótopos de Potássio/análise , Doses de Radiação , Rádio (Elemento)/análise , Espectrometria gama , Tório/análise
6.
Life (Basel) ; 11(6)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201142

RESUMO

222Rn gas represents the major contributor to human health risk from environmental radiological exposure. In confined spaces radon can accumulate to relatively high levels so that mitigation actions are necessary. The Italian legislation on radiation protection has set a reference value for the activity concentration of radon at 300 Bq/m3. In this study, measurements of the annual radon concentration of 62 bank buildings spread throughout the Campania region (Southern Italy) were carried out. Using devices based on CR-39 solid-state nuclear track detectors, the 222Rn level was assessed in 136 confined spaces (127 at underground floors and 9 at ground floors) frequented by workers and/or the public. The survey parameters considered in the analysis of the results were: floor types, wall cladding materials, number of openings, door/window opening duration for air exchange. Radon levels were found to be between 17 and 680 Bq/m3, with an average value of 130 Bq/m3 and a standard deviation of 120 Bq/m3. About 7% of the results gave a radon activity concentration above 300 Bq/m3. The analysis showed that the floor level and air exchange have the most significant influence. This study highlighted the importance of the assessment of indoor radon levels for work environments in particular, to protect the workers and public from radon-induced health effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA