Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Transl Vis Sci Technol ; 13(3): 11, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38488432

RESUMO

Purpose: To compare the diagnostic performance of artificial intelligence (AI)-based diabetic retinopathy (DR) staging system across pseudocolor, simulated white light (SWL), and light-emitting diode (LED) camera imaging modalities. Methods: A cross-sectional investigation involved patients with diabetes undergoing imaging with an iCare DRSplus confocal LED camera and an Optos confocal, ultra-widefield pseudocolor camera, with and without SWL. Macula-centered and optic nerve-centered 45 × 45-degree photographs were processed using EyeArt v2.1. Human graders established the ground truth (GT) for DR severity on dilated fundus exams. Sensitivity and weighted Cohen's weighted kappa (wκ) were calculated. An ordinal generalized linear mixed model identified factors influencing accurate DR staging. Results: The study included 362 eyes from 189 patients. The LED camera excelled in identifying sight-threatening DR stages (sensitivity = 0.83, specificity = 0.95 for proliferative DR) and had the highest agreement with the GT (wκ = 0.71). The addition of SWL to pseudocolor imaging resulted in decreased performance (sensitivity = 0.33, specificity = 0.98 for proliferative DR; wκ = 0.55). Peripheral lesions reduced the likelihood of being staged in the same or higher DR category by 80% (P < 0.001). Conclusions: Pseudocolor and LED cameras, although proficient, demonstrated non-interchangeable performance, with the LED camera exhibiting superior accuracy in identifying advanced DR stages. These findings underscore the importance of implementing AI systems trained for ultra-widefield imaging, considering the impact of peripheral lesions on correct DR staging. Translational Relevance: This study underscores the need for artificial intelligence-based systems specifically trained for ultra-widefield imaging in diabetic retinopathy assessment.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Macula Lutea , Humanos , Retinopatia Diabética/diagnóstico por imagem , Inteligência Artificial , Estudos Transversais , Fundo de Olho
2.
Ophthalmol Ther ; 13(6): 1553-1567, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38587776

RESUMO

INTRODUCTION: The aim of this work is to estimate the sensitivity, specificity, and misclassification rate of an automated retinal image analysis system (ARIAS) in diagnosing active diabetic macular edema (DME) and to identify factors associated with true and false positives. METHODS: We conducted a cross-sectional study of prospectively enrolled patients with diabetes mellitus (DM) referred to a tertiary medical retina center for screening or management of DME. All patients underwent two-field fundus photography (macula- and disc-centered) with a true-color confocal camera; images were processed by EyeArt V.2.1.0 (Woodland Hills, CA, USA). Active DME was defined as the presence of intraretinal or subretinal fluid on spectral-domain optical coherence tomography (SD-OCT). Sensitivity and specificity and their 95% confidence intervals (CIs) were calculated. Variables associated with true (i.e., DME labeled as present by ARIAS + fluid on SD-OCT) and false positives (i.e., DME labeled as present by ARIAS + no fluid on SD-OCT) of active DME were explored. RESULTS: A total of 298 eyes were included; 92 eyes (31%) had active DME. ARIAS sensitivity and specificity were 82.61% (95% CI 72.37-89.60) and 84.47% (95% CI 78.34-89.10). The misclassification rate was 16%. Factors associated with true positives included younger age (p = 0.01), shorter DM duration (p = 0.006), presence of hard exudates (p = 0.005), and microaneurysms (p = 0.002). Factors associated with false positives included longer DM duration (p = 0.01), worse diabetic retinopathy severity (p = 0.008), history of inactivated DME (p < 0.001), and presence of hard exudates (p < 0.001), microaneurysms (p < 0.001), or epiretinal membrane (p = 0.06). CONCLUSIONS: The sensitivity of ARIAS was diminished in older patients and those without DME-related fundus lesions, while the specificity was reduced in cases with a history of inactivated DME. ARIAS performed well in screening for naïve DME but is not effective in surveillance inactivated DME.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA