Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Viruses ; 15(2)2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36851624

RESUMO

High-throughput sequencing (HTS) has been an important tool for the discovery of plant viruses and their surveillance. In 2015, several virus-like symptoms were observed in passion fruit (PF) plants in Bahia state, Brazil. Using HTS technology, bioinformatics tools, RT-PCR, and Sanger sequencing, we identified the cucurbit aphid-borne yellows virus (CABYV, Polerovirus, Solemoviridae) in co-infection with cowpea aphid-borne mosaic virus (CABMV, Potyvirus, Potyviridae) in PF, in green manure, and spontaneous plants in several localities in Bahia. Complete genomes of CABYV-PF isolates were determined and analyzed with other CABYV isolates available in GenBank that have been identified in various countries. Phylogenetic analysis and pairwise identity comparison with CABYV isolates showed that CABYV-PFs are more closely related to French and Spanish isolates. Overall, analyses of all the CABYV genomes revealed that these could represent ten distinct species, and we thus proposed reclassifying these CABYV as isolates into ten species, tentatively named "Polerovirus curcubitaeprimum" to "Polerovirus curcubitaenonum", and "Polerovirus melo". CABYV-PF is a member of "Polerovirus curcubitaeprimum".


Assuntos
Luteoviridae , Passiflora , Brasil , Frutas , Filogenia , Luteoviridae/genética
2.
Virus Res ; 240: 175-179, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28843502

RESUMO

Viruses in the family Geminiviridae have single-stranded DNA genomes encapsulated in geminate icosahedral particles. High throughput sequencing (HTS) for metagenomic approaches are being extensively used for the identification of known and novel viruses. Using a HTS approach, we identified a novel geminivirus in a tomato (Solanum lycopersicum) sample and a Cleome sp. sample collected in the midwest region of Brazil. The genomes from the two samples share 99.96% identity and ∼61-63% to genomes in the genus Capulavirus. The novel virus has been tentatively named tomato associated geminivirus 1 (TaGV1). No visual symptoms were observed in the field tomato plant or in the inoculated Nicotiana benthamiana where the virus established a systemic infection. The replication associated protein of TaGV1 is most similar to that encoded by capulaviruses (sharing 62-70% identity), whereas the CP is most similar to that of tomato pseudo curly top virus (sharing ∼31% identity). In the TaGV1 positive Cleome sp. sample, begomovirus DNA A and B components were also detected sharing 96% and 90% sequence identity to cleome leaf crumple virus DNA A and B components, respectively. Using a HTS approach, we identified TaGV1 in tomato and Cleome sp. samples and this is the first report of a geminivirus that is non-begomovirus in Brazil.


Assuntos
Cleome/virologia , Geminiviridae/isolamento & purificação , Doenças das Plantas/virologia , Solanum lycopersicum/virologia , Brasil , Geminiviridae/classificação , Geminiviridae/genética , Filogenia , Folhas de Planta/virologia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA