Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Mol Cell ; 77(4): 748-760.e9, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31785928

RESUMO

Mutations affecting exon 9 of the CALR gene lead to the generation of a C-terminally modified calreticulin (CALR) protein that lacks the KDEL endoplasmic reticulum (ER) retention signal and consequently mislocalizes outside of the ER where it activates the thrombopoietin receptor in a cell-autonomous fashion, thus driving myeloproliferative diseases. Here, we used the retention using selective hooks (RUSH) assay to monitor the trafficking of CALR. We found that exon-9-mutated CALR was released from cells in response to the biotin-mediated detachment from its ER-localized hook, in vitro and in vivo. Cellular CALR release was confirmed in suitable mouse models bearing exon-9-mutated hematopoietic systems or tumors. Extracellular CALR mediated immunomodulatory effects and inhibited the phagocytosis of dying cancer cells by dendritic cells (DC), thereby suppressing antineoplastic immune responses elicited by chemotherapeutic agents or by PD-1 blockade. Altogether, our results demonstrate paracrine immunosuppressive effects for exon-9-mutated CALR.


Assuntos
Calreticulina/genética , Tolerância Imunológica/genética , Mutação , Neoplasias/genética , Neoplasias/imunologia , Animais , Calreticulina/metabolismo , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Fagocitose
2.
Proc Natl Acad Sci U S A ; 119(19): e2120098119, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35507869

RESUMO

Microtubule dynamics is regulated by various cellular proteins and perturbed by small-molecule compounds. To what extent the mechanism of the former resembles that of the latter is an open question. We report here structures of tubulin bound to the PN2-3 domain of CPAP, a protein controlling the length of the centrioles. We show that an α-helix of the PN2-3 N-terminal region binds and caps the longitudinal surface of the tubulin ß subunit. Moreover, a PN2-3 N-terminal stretch lies in a ß-tubulin site also targeted by fungal and bacterial peptide-like inhibitors of the vinca domain, sharing a very similar binding mode with these compounds. Therefore, our results identify several characteristic features of cellular partners that bind to this site and highlight a structural convergence of CPAP with small-molecule inhibitors of microtubule assembly.


Assuntos
Tubulina (Proteína) , Vinca , Microtúbulos/metabolismo , Ligação Proteica , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina , Vinca/metabolismo
3.
Mol Cell ; 58(6): 1001-14, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-26004228

RESUMO

Apoptosis-inducing factor (AIF) is a mitochondrial flavoprotein that, beyond its apoptotic function, is required for the normal expression of major respiratory chain complexes. Here we identified an AIF-interacting protein, CHCHD4, which is the central component of a redox-sensitive mitochondrial intermembrane space import machinery. Depletion or hypomorphic mutation of AIF caused a downregulation of CHCHD4 protein by diminishing its mitochondrial import. CHCHD4 depletion sufficed to induce a respiratory defect that mimicked that observed in AIF-deficient cells. CHCHD4 levels could be restored in AIF-deficient cells by enforcing its AIF-independent mitochondrial localization. This modified CHCHD4 protein reestablished respiratory function in AIF-deficient cells and enabled AIF-deficient embryoid bodies to undergo cavitation, a process of programmed cell death required for embryonic morphogenesis. These findings explain how AIF contributes to the biogenesis of respiratory chain complexes, and they establish an unexpected link between the vital function of AIF and the propensity of cells to undergo apoptosis.


Assuntos
Fator de Indução de Apoptose/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Sequência de Aminoácidos , Animais , Fator de Indução de Apoptose/genética , Linhagem Celular Tumoral , Transporte de Elétrons/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/genética , Humanos , Immunoblotting , Camundongos Knockout , Mitocôndrias/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Dados de Sequência Molecular , Ligação Proteica , Transporte Proteico/genética , Interferência de RNA , Fatores de Tempo
4.
Mol Cell ; 48(5): 667-80, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23084476

RESUMO

In a screen designed to identify novel inducers of autophagy, we discovered that STAT3 inhibitors potently stimulate the autophagic flux. Accordingly, genetic inhibition of STAT3 stimulated autophagy in vitro and in vivo, while overexpression of STAT3 variants, encompassing wild-type, nonphosphorylatable, and extranuclear STAT3, inhibited starvation-induced autophagy. The SH2 domain of STAT3 was found to interact with the catalytic domain of the eIF2α kinase 2 EIF2AK2, best known as protein kinase R (PKR). Pharmacological and genetic inhibition of STAT3 stimulated the activating phosphorylation of PKR and consequent eIF2α hyperphosphorylation. Moreover, PKR depletion inhibited autophagy as initiated by chemical STAT3 inhibitors or free fatty acids like palmitate. STAT3-targeting chemicals and palmitate caused the disruption of inhibitory STAT3-PKR interactions, followed by PKR-dependent eIF2α phosphorylation, which facilitates autophagy induction. These results unravel an unsuspected mechanism of autophagy control that involves STAT3 and PKR as interacting partners.


Assuntos
Autofagia , Citoplasma/enzimologia , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Transcrição STAT3/metabolismo , eIF-2 Quinase/metabolismo , Animais , Autofagia/efeitos dos fármacos , Domínio Catalítico , Linhagem Celular Tumoral , Ativação Enzimática , Fator de Iniciação 2 em Eucariotos/deficiência , Fator de Iniciação 2 em Eucariotos/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Simulação de Acoplamento Molecular , Ácido Palmítico/farmacologia , Fosforilação , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Interferência de RNA , Proteínas Recombinantes de Fusão/metabolismo , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/química , Fator de Transcrição STAT3/deficiência , Fator de Transcrição STAT3/genética , Transdução de Sinais , Fatores de Tempo , Transfecção , eIF-2 Quinase/química , eIF-2 Quinase/genética , Domínios de Homologia de src
5.
EMBO J ; 30(24): 4908-20, 2011 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-22081109

RESUMO

Autophagic responses are coupled to the activation of the inhibitor of NF-κB kinase (IKK). Here, we report that the essential autophagy mediator Beclin 1 and TGFß-activated kinase 1 (TAK1)-binding proteins 2 and 3 (TAB2 and TAB3), two upstream activators of the TAK1-IKK signalling axis, constitutively interact with each other via their coiled-coil domains (CCDs). Upon autophagy induction, TAB2 and TAB3 dissociate from Beclin 1 and bind TAK1. Moreover, overexpression of TAB2 and TAB3 suppresses, while their depletion triggers, autophagy. The expression of the C-terminal domain of TAB2 or TAB3 or that of the CCD of Beclin 1 competitively disrupts the interaction between endogenous Beclin 1, TAB2 and TAB3, hence stimulating autophagy through a pathway that requires endogenous Beclin 1, TAK1 and IKK to be optimally efficient. These results point to the existence of an autophagy-stimulatory 'switch' whereby TAB2 and TAB3 abandon inhibitory interactions with Beclin 1 to engage in a stimulatory liaison with TAK1.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/genética , Proteína Beclina-1 , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Estrutura Terciária de Proteína , Técnicas do Sistema de Duplo-Híbrido
6.
J Biol Chem ; 287(26): 22341-53, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-22577147

RESUMO

During nervous system development, neuronal growth, migration, and functional morphogenesis rely on the appropriate control of the subcellular cytoskeleton including microtubule dynamics. Stathmin family proteins play major roles during the various stages of neuronal differentiation, including axonal growth and branching, or dendritic development. We have shown previously that stathmins 2 (SCG10) and 3 (SCLIP) fulfill distinct, independent and complementary regulatory roles in axonal morphogenesis. Although the two proteins have been proposed to display the four conserved phosphorylation sites originally identified in stathmin 1, we show here that they possess distinct phosphorylation sites within their specific proline-rich domains (PRDs) that are differentially regulated by phosphorylation by proline-directed kinases involved in the control of neuronal differentiation. ERK2 or CDK5 phosphorylate the two proteins but with different site specificities. We also show for the first time that, unlike stathmin 2, stathmin 3 is a substrate for glycogen synthase kinase (GSK) 3ß both in vitro and in vivo. Interestingly, stathmin 3 phosphorylated at its GSK-3ß target site displays a specific subcellular localization at neuritic tips and within the actin-rich peripheral zone of the growth cone of differentiating hippocampal neurons in culture. Finally, pharmacological inhibition of GSK-3ß induces a redistribution of stathmin 3, but not stathmin 2, from the periphery toward the Golgi region of neurons. Stathmin proteins can thus be either regulated locally or locally targeted by specific phosphorylation, each phosphoprotein of the stathmin family fulfilling distinct and specific roles in the control of neuronal differentiation.


Assuntos
Quinase 3 da Glicogênio Sintase/metabolismo , Neurônios/metabolismo , Prolina/química , Serina/química , Estatmina/metabolismo , Animais , Diferenciação Celular , Glicogênio Sintase Quinase 3 beta , Células HeLa , Humanos , Microtúbulos/metabolismo , Modelos Biológicos , Neuritos/metabolismo , Fosforilação , Coelhos , Ratos , Ratos Sprague-Dawley , Ratos Wistar
7.
Cells ; 12(12)2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37371112

RESUMO

Unlocking cell secretion capacity is of paramount interest for the pharmaceutical industry focused on biologics. Here, we leveraged retention using a selective hook (RUSH) system for the identification of human osteosarcoma U2OS cell secretion modulators, through automated, high-throughput screening of small compound libraries. We created a U2OS cell line which co-expresses a variant of streptavidin addressed to the lumen-facing membrane of the endoplasmic reticulum (ER) and a recombinant anti-PD-L1 antibody. The heavy chain of the antibody was modified at its C-terminus, to which a furin cleavage site, a green fluorescent protein (GFP), and a streptavidin binding peptide (SBP) were added. We show that the U2OS cell line stably expresses the streptavidin hook and the recombinant antibody bait, which is retained in the ER through the streptavidin-SBP interaction. We further document that the addition of biotin to the culture medium triggers the antibody release from the ER, its trafficking through the Golgi where the GFP-SBP moiety is clipped off, and eventually its release in the extra cellular space, with specific antigen-binding properties. The use of this clone in screening campaigns led to the identification of lycorine as a secretion enhancer, and nigericin and tyrphostin AG-879 as secretion inhibitors. Altogether, our data support the utility of this approach for the identification of agents that could be used to improve recombinant production yields and also for a better understanding of the regulatory mechanism at work in the conventional secretion pathway.


Assuntos
Estreptavidina , Humanos , Proteínas Recombinantes/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Linhagem Celular , Transporte Biológico
8.
Aging Cell ; 22(1): e13751, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36510662

RESUMO

Autophagy defects accelerate aging, while stimulation of autophagy decelerates aging. Acyl-coenzyme A binding protein (ACBP), which is encoded by a diazepam-binding inhibitor (DBI), acts as an extracellular feedback regulator of autophagy. As shown here, knockout of the gene coding for the yeast orthologue of ACBP/DBI (ACB1) improves chronological aging, and this effect is reversed by knockout of essential autophagy genes (ATG5, ATG7) but less so by knockout of an essential mitophagy gene (ATG32). In humans, ACBP/DBI levels independently correlate with body mass index (BMI) as well as with chronological age. In still-healthy individuals, we find that high ACBP/DBI levels correlate with future cardiovascular events (such as heart surgery, myocardial infarction, and stroke), an association that is independent of BMI and chronological age, suggesting that ACBP/DBI is indeed a biomarker of "biological" aging. Concurringly, ACBP/DBI plasma concentrations correlate with established cardiovascular risk factors (fasting glucose levels, systolic blood pressure, total free cholesterol, triglycerides), but are inversely correlated with atheroprotective high-density lipoprotein (HDL). In mice, neutralization of ACBP/DBI through a monoclonal antibody attenuates anthracycline-induced cardiotoxicity, which is a model of accelerated heart aging. In conclusion, plasma elevation of ACBP/DBI constitutes a novel biomarker of chronological aging and facets of biological aging with a prognostic value in cardiovascular disease.


Assuntos
Doenças Cardiovasculares , Proteínas de Transporte , Animais , Humanos , Camundongos , Doenças Cardiovasculares/genética , Coenzima A/metabolismo , Inibidor da Ligação a Diazepam/genética , Inibidor da Ligação a Diazepam/metabolismo , Proteínas Nucleares/metabolismo
9.
J Biol Chem ; 285(15): 11667-80, 2010 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-20145240

RESUMO

In vertebrates, stathmins form a family of proteins possessing two tubulin binding repeats (TBRs), which each binds one soluble tubulin heterodimer. The stathmins thus sequester two tubulins in a phosphorylation-dependent manner, providing a link between signal transduction and microtubule dynamics. In Drosophila, we show here that a single stathmin gene (stai) encodes a family of D-stathmin proteins. Two of the D-stathmins are maternally deposited and then restricted to germ cells, and the other two are detected in the nervous system during embryo development. Like in vertebrates, the nervous system-enriched stathmins contain an N-terminal domain involved in subcellular targeting. All the D-stathmins possess a domain containing three or four predicted TBRs, and we demonstrate here, using complementary biochemical and biophysical methods, that all four predicted TBR domains actually bind tubulin. D-stathmins can indeed bind up to four tubulins, the resulting complex being directly visualized by electron microscopy. Phylogenetic analysis shows that the presence of regulated multiple tubulin sites is a conserved characteristic of stathmins in invertebrates and allows us to predict key residues in stathmin for the binding of tubulin. Altogether, our results reveal that the single Drosophila stathmin gene codes for a stathmin family similar to the multigene vertebrate one, but with particular tubulin binding properties.


Assuntos
Ligação Proteica , Estatmina/química , Estatmina/genética , Tubulina (Proteína)/química , Animais , Dimerização , Drosophila , Células HeLa , Humanos , Hibridização In Situ , Microtúbulos/metabolismo , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Interferência de RNA , Proteínas Recombinantes/química , Ressonância de Plasmônio de Superfície
10.
J Exp Med ; 218(10)2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34495298

RESUMO

Cholangiocarcinoma (CCA) results from the malignant transformation of cholangiocytes. Primary sclerosing cholangitis (PSC) and primary biliary cholangitis (PBC) are chronic diseases in which cholangiocytes are primarily damaged. Although PSC is an inflammatory condition predisposing to CCA, CCA is almost never found in the autoimmune context of PBC. Here, we hypothesized that PBC might favor CCA immunosurveillance. In preclinical murine models of cholangitis challenged with syngeneic CCA, PBC (but not PSC) reduced the frequency of CCA development and delayed tumor growth kinetics. This PBC-related effect appeared specific to CCA as it was not observed against other cancers, including hepatocellular carcinoma. The protective effect of PBC was relying on type 1 and type 2 T cell responses and, to a lesser extent, on B cells. Single-cell TCR/RNA sequencing revealed the existence of TCR clonotypes shared between the liver and CCA tumor of a PBC host. Altogether, these results evidence a mechanistic overlapping between autoimmunity and cancer immunosurveillance in the biliary tract.


Assuntos
Autoimunidade , Neoplasias dos Ductos Biliares/imunologia , Colangiocarcinoma/imunologia , Colangite/imunologia , Animais , Neoplasias dos Ductos Biliares/patologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Colangiocarcinoma/patologia , Colangite/patologia , Citocinas/metabolismo , Feminino , Fatores de Transcrição Forkhead/metabolismo , Fígado/imunologia , Fígado/patologia , Camundongos Endogâmicos C57BL , Monitorização Imunológica , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/patologia
11.
Nature ; 428(6979): 198-202, 2004 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-15014504

RESUMO

Microtubules are cytoskeletal polymers of tubulin involved in many cellular functions. Their dynamic instability is controlled by numerous compounds and proteins, including colchicine and stathmin family proteins. The way in which microtubule instability is regulated at the molecular level has remained elusive, mainly because of the lack of appropriate structural data. Here, we present the structure, at 3.5 A resolution, of tubulin in complex with colchicine and with the stathmin-like domain (SLD) of RB3. It shows the interaction of RB3-SLD with two tubulin heterodimers in a curved complex capped by the SLD amino-terminal domain, which prevents the incorporation of the complexed tubulin into microtubules. A comparison with the structure of tubulin in protofilaments shows changes in the subunits of tubulin as it switches from its straight conformation to a curved one. These changes correlate with the loss of lateral contacts and provide a rationale for the rapid microtubule depolymerization characteristic of dynamic instability. Moreover, the tubulin-colchicine complex sheds light on the mechanism of colchicine's activity: we show that colchicine binds at a location where it prevents curved tubulin from adopting a straight structure, which inhibits assembly.


Assuntos
Colchicina/química , Colchicina/metabolismo , Proteínas dos Microtúbulos , Fatores de Crescimento Neural/química , Fatores de Crescimento Neural/metabolismo , Fosfoproteínas/química , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Colchicina/farmacologia , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas , Estatmina , Moduladores de Tubulina
12.
Cell Death Discov ; 6(1): 129, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33298861

RESUMO

Salicylate, the active derivative of aspirin (acetylsalicylate), recapitulates the mode of action of caloric restriction inasmuch as it stimulates autophagy through the inhibition of the acetyltransferase activity of EP300. Here, we directly compared the metabolic effects of aspirin medication with those elicited by 48 h fasting in mice, revealing convergent alterations in the plasma and the heart metabolome. Aspirin caused a transient reduction of general protein acetylation in blood leukocytes, accompanied by the induction of autophagy. However, these effects on global protein acetylation could not be attributed to the mere inhibition of EP300, as determined by epistatic experiments and exploration of the acetyl-proteome from salicylate-treated EP300-deficient cells. Aspirin reduced high-fat diet-induced obesity, diabetes, and hepatosteatosis. These aspirin effects were observed in autophagy-competent mice but not in two different models of genetic (Atg4b-/- or Bcln1+/-) autophagy-deficiency. Aspirin also improved tumor control by immunogenic chemotherapeutics, and this effect was lost in T cell-deficient mice, as well as upon knockdown of an essential autophagy gene (Atg5) in cancer cells. Hence, the health-improving effects of aspirin depend on autophagy.

13.
Cell Death Differ ; 27(10): 2904-2920, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32376874

RESUMO

The pharmacological targeting of polyamine metabolism is currently under the spotlight for its potential in the prevention and treatment of several age-associated disorders. Here, we report the finding that triethylenetetramine dihydrochloride (TETA), a copper-chelator agent that can be safely administered to patients for the long-term treatment of Wilson disease, exerts therapeutic benefits in animals challenged with hypercaloric dietary regimens. TETA reduced obesity induced by high-fat diet, excessive sucrose intake, or leptin deficiency, as it reduced glucose intolerance and hepatosteatosis, but induced autophagy. Mechanistically, these effects did not involve the depletion of copper from plasma or internal organs. Rather, the TETA effects relied on the activation of an energy-consuming polyamine catabolism, secondary to the stabilization of spermidine/spermine N1-acetyltransferase-1 (SAT1) by TETA, resulting in enhanced enzymatic activity of SAT. All the positive effects of TETA on high-fat diet-induced metabolic syndrome were lost in SAT1-deficient mice. Altogether, these results suggest novel health-promoting effects of TETA that might be taken advantage of for the prevention or treatment of obesity.


Assuntos
Acetiltransferases/metabolismo , Quelantes/farmacologia , Obesidade/tratamento farmacológico , Trientina/análogos & derivados , Animais , Dieta Hiperlipídica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/induzido quimicamente
14.
Cell Death Dis ; 10(10): 771, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601788

RESUMO

The retention using selective hooks (RUSH) system allows to retain a target protein fused to green fluorescent protein (GFP) and a streptavidin-binding peptide (SBP) due to the interaction with a molar excess of streptavidin molecules ("hooks") targeted to selected subcellular compartments. Supplementation of biotin competitively disrupts the interaction between the SBP moiety and streptavidin, liberating the chimeric target protein from its hooks, while addition of avidin causes the removal of biotin from the system and reestablishes the interaction. Based on this principle, we engineered two chimeric proteins involved in autophagy, namely microtubule-associated proteins 1A/1B light chain 3B (MAP1LC3B, best known as LC3) and sequestosome-1 (SQSTM1, best known as p62) to move them as SBP-GFP-LC3 and p62-SBP-GFP at will between the cytosol and two different organelles, the endoplasmic reticulum (ER) and the Golgi apparatus. Although both proteins were functional in thus far that SBP-GFP-LC3 and p62-SBP-GFP could recruit their endogenous binding partners, p62 and LC3, respectively, their enforced relocation to the ER or Golgi failed to induce organelle-specific autophagy. Hence, artificial tethering of LC3 or p62 to the surface of the ER and the Golgi is not sufficient to trigger autophagy.


Assuntos
Autofagia/genética , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagia/efeitos dos fármacos , Biotina/metabolismo , Linhagem Celular Tumoral , Citosol/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteínas Associadas aos Microtúbulos/genética , Ligação Proteica/genética , Ligação Proteica/fisiologia , Transporte Proteico/genética , Transporte Proteico/fisiologia , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Estreptavidina/metabolismo
15.
EMBO Mol Med ; 11(11): e10469, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31609086

RESUMO

Caloric restriction mimetics (CRMs) are natural or synthetic compounds that mimic the health-promoting and longevity-extending effects of caloric restriction. CRMs provoke the deacetylation of cellular proteins coupled to an increase in autophagic flux in the absence of toxicity. Here, we report the identification of a novel candidate CRM, namely 3,4-dimethoxychalcone (3,4-DC), among a library of polyphenols. When added to several different human cell lines, 3,4-DC induced the deacetylation of cytoplasmic proteins and stimulated autophagic flux. At difference with other well-characterized CRMs, 3,4-DC, however, required transcription factor EB (TFEB)- and E3 (TFE3)-dependent gene transcription and mRNA translation to trigger autophagy. 3,4-DC stimulated the translocation of TFEB and TFE3 into nuclei both in vitro and in vivo, in hepatocytes and cardiomyocytes. 3,4-DC induced autophagy in vitro and in mouse organs, mediated autophagy-dependent cardioprotective effects, and improved the efficacy of anticancer chemotherapy in vivo. Altogether, our results suggest that 3,4-DC is a novel CRM with a previously unrecognized mode of action.


Assuntos
Autofagia/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Cardiotônicos/metabolismo , Chalconas/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos , Acetilação , Estruturas Animais/patologia , Animais , Cardiotônicos/administração & dosagem , Linhagem Celular , Chalconas/administração & dosagem , Hepatócitos/efeitos dos fármacos , Humanos , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Processamento de Proteína Pós-Traducional , Transporte Proteico
16.
Sci Rep ; 8(1): 14966, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30297865

RESUMO

The retention using selective hooks (RUSH) system allows to withhold a fluorescent biosensor such as green fluorescent protein (GFP) fused to a streptavidin-binding peptide (SBP) by an excess of streptavidin molecules that are addressed to different subcellular localizations. Addition of biotin competitively disrupts this interaction, liberating the biosensor from its hook. We constructed a human cell line co-expressing soluble secretory-SBP-GFP (ss-SBP-GFP) and streptavidin within the endoplasmic reticulum (ER) lumen and then used this system to screen a compound library for inhibitors of the biotin-induced release of ss-SBP-GFP via the conventional Golgi-dependent protein secretion pathway into the culture supernatant. We identified and validated a series of molecularly unrelated drugs including antianginal, antidepressant, anthelmintic, antipsychotic, antiprotozoal and immunosuppressive agents that inhibit protein secretion. These compounds vary in their capacity to suppress protein synthesis and to compromise ER morphology and Golgi integrity, as well as in the degree of reversibility of such effects. In sum, we demonstrate the feasibility and utility of a novel RUSH-based phenotypic screening assay.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Proteínas/metabolismo , Linhagem Celular Tumoral , Análise por Conglomerados , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Análise de Componente Principal , Biossíntese de Proteínas , Estrutura Secundária de Proteína , Proteínas/química , Reprodutibilidade dos Testes
17.
Cell Rep ; 22(9): 2395-2407, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29490275

RESUMO

The age-associated deterioration in cellular and organismal functions associates with dysregulation of nutrient-sensing pathways and disabled autophagy. The reactivation of autophagic flux may prevent or ameliorate age-related metabolic dysfunctions. Non-toxic compounds endowed with the capacity to reduce the overall levels of protein acetylation and to induce autophagy have been categorized as caloric restriction mimetics (CRMs). Here, we show that aspirin or its active metabolite salicylate induce autophagy by virtue of their capacity to inhibit the acetyltransferase activity of EP300. While salicylate readily stimulates autophagic flux in control cells, it fails to further increase autophagy levels in EP300-deficient cells, as well as in cells in which endogenous EP300 has been replaced by salicylate-resistant EP300 mutants. Accordingly, the pro-autophagic activity of aspirin and salicylate on the nematode Caenorhabditis elegans is lost when the expression of the EP300 ortholog cpb-1 is reduced. Altogether, these findings identify aspirin as an evolutionary conserved CRM.


Assuntos
Aspirina/farmacologia , Restrição Calórica , Acetilcoenzima A/metabolismo , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Linhagem Celular Tumoral , Proteína p300 Associada a E1A/metabolismo , Humanos , Metaboloma/efeitos dos fármacos , Metabolômica , Camundongos Endogâmicos C57BL
18.
Oncotarget ; 8(52): 89527-89538, 2017 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-29163768

RESUMO

Beclin 1 (BECN1) is a multifunctional protein that activates the pro-autophagic class III phosphatidylinositol 3-kinase (PIK3C3, best known as VPS34), yet also interacts with multiple negative regulators. Here we report that BECN1 interacts with inhibitor of growth family member 4 (ING4), a tumor suppressor protein that is best known for its capacity to interact with the tumor suppressor protein p53 (TP53) and the acetyltransferase E1A binding protein p300 (EP300). Removal of TP53 or EP300 did not affect the BECN1/ING4 interaction, which however was lost upon culture of cells in autophagy-inducing, nutrient free conditions. Depletion of ING4 stimulated the enzymatic activity of PIK3C3, as visualized by means of a red fluorescent protein-tagged short peptide (FYVE) that specifically binds to phosphatidylinositol-3-phosphate (PI3P)-containing subcellular vesicles and enhanced autophagy, as indicated by an enhanced lipidation of microtubule-associated proteins 1A/1B light chain 3 beta (LC3B) and the redistribution of a green-fluorescent protein (GFP)-LC3B fusion protein to cytoplasmic puncta. The generation of GFP-LC3B puncta stimulated by ING4 depletion was reduced by simultaneous depletion, or pharmacological inhibition, of PIK3C3/VPS34. In conclusion, ING4 acts as a negative regulator of the lipid kinase activity of the BECN1 complex, and starvation-induced autophagy is accompanied by the dissociation of the ING4/BECN1 interaction.

19.
Sci Rep ; 7(1): 14915, 2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-29097772

RESUMO

The translocation of the protein high mobility group box 1 (HMGB1) from the nucleus to the cytoplasm and its secretion or passive release through the permeabilized plasma membrane, constitutes a major cellular danger signal. Extracellular HMGB1 can interact with pattern recognition receptors to stimulate pro-inflammatory and immunostimulatory pathways. Here, we developed a screening assay to identify pharmacological agents endowed with HMGB1 releasing properties. For this, we took advantage of the "retention using selective hooks" (RUSH) system in which a streptavidin-NLS3 fusion protein was used as a nuclear hook to sequestrate streptavidin-binding peptide (SBP) fused with HMGB1 and green fluorescent protein (GFP). When combined with biotin, which competitively disrupts the interaction between streptavidin-NLS3 and HMGB1-SBP-GFP, immunogenic cell death (ICD) inducers such as anthracyclines were able to cause the nucleo-cytoplasmic translocation of HMGB1-SBP-GFP. This system, was used in a high-content screening (HCS) campaign for the identification of HMGB1 releasing agents. Hits fell into three functional categories: known ICD inducers, microtubule inhibitors and epigenetic modifiers. These agents induced ICD through a panoply of distinct mechanisms. Their effective action was confirmed by multiple methods monitoring nuclear, cytoplasmic and extracellular HMGB1 pools, both in cultured human or murine cells, as well as in mouse plasma.


Assuntos
Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Proteína HMGB1/metabolismo , Transporte Proteico/efeitos dos fármacos , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular , Nucléolo Celular/efeitos dos fármacos , Nucléolo Celular/metabolismo , Feminino , Proteína HMGB1/análise , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Moduladores de Tubulina/farmacologia
20.
Cell Cycle ; 16(3): 271-279, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28059601

RESUMO

Phase II clinical trials indicate that the combination of cysteamine plus epigallocatechin gallate (EGCG) is effective against cystic fibrosis in patients bearing the most frequent etiological mutation (CFTRΔF508). Here, we investigated the interaction between both agents on cultured respiratory epithelia cells from normal and CFTRΔF508-mutated donors. We observed that the combination of both agents affected metabolic circuits (and in particular the tricarboxylic acid cycle) in a unique way and that cysteamine plus EGCG reduced cytoplasmic protein acetylation more than each of the 2 components alone. In a cell-free system, protein cross-linking activity of EGCG was suppressed by cysteamine. Finally, EGCG was able to enhance the conversion of cysteamine into taurine in metabolic flux experiments. Altogether, these results indicate that multiple pharmacological interactions occur between cysteamine and EGCG, suggesting that they contribute to the unique synergy of both agents in restoring the function of mutated CFTRΔF508.


Assuntos
Catequina/análogos & derivados , Cisteamina/metabolismo , Acetilação/efeitos dos fármacos , Catequina/metabolismo , Catequina/farmacologia , Linhagem Celular , Ciclo do Ácido Cítrico/efeitos dos fármacos , Reagentes de Ligações Cruzadas/metabolismo , Cisteamina/farmacologia , Citoplasma/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Análise do Fluxo Metabólico , Metabolômica , Mucosa Respiratória/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA