Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Br J Cancer ; 122(7): 943-952, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32042067

RESUMO

Why do we get cancer mostly when we are old? According to current paradigms, the answer is simple: mutations accumulate in our tissues throughout life, and some of these mutations contribute to cancers. Although mutations are necessary for cancer development, a number of studies shed light on roles for ageing and exposure-dependent changes in tissue landscapes that determine the impact of oncogenic mutations on cellular fitness, placing carcinogenesis into an evolutionary framework. Natural selection has invested in somatic maintenance to maximise reproductive success. Tissue maintenance not only ensures functional robustness but also prevents the occurrence of cancer through periods of likely reproduction by limiting selection for oncogenic events in our cells. Indeed, studies in organisms ranging from flies to humans are revealing conserved mechanisms to eliminate damaged or oncogenically initiated cells from tissues. Reports of the existence of striking numbers of oncogenically initiated clones in normal tissues and of how this clonal architecture changes with age or external exposure to noxious substances provide critical insight into the early stages of cancer development. A major challenge for cancer biology will be the integration of these studies with epidemiology data into an evolutionary theory of carcinogenesis, which could have a large impact on addressing cancer risk and treatment.


Assuntos
Envelhecimento/patologia , Microambiente Tumoral/genética , Idoso , Idoso de 80 Anos ou mais , Evolução Biológica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Neoplasias
2.
Am J Pathol ; 185(1): 110-28, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25447047

RESUMO

In normal rat liver, thymocyte antigen 1 (Thy1) is expressed in fibroblasts/myofibroblasts and in some blood progenitor cells. Thy1-expressing cells also accumulate in the liver during impaired liver regeneration. The origin and nature of these cells are not well understood. By using RT-PCR analysis and immunofluorescence microscopy, we describe the presence of rare Thy1(+) cells in the liver lobule of normal animals, occasionally forming small collections of up to 20 cells. These cells constitute a small portion (1.7% to 1.8%) of nonparenchymal cells and reveal a mixed mesenchymal-epithelial phenotype, expressing E-cadherin, cytokeratin 18, and desmin. The most potent mitogens for mesenchymal-epithelial Thy1(+) cells in vitro are the inflammatory cytokines interferon γ, IL-1, and platelet-derived growth factor-BB, which are not produced by Thy1(+) cells. Thy1(+) cells express all typical mesenchymal stem cell and hepatic progenitor cell markers and produce growth factor and cytokine mRNA (Hgf, Il6, Tgfa, and Tweak) for proteins that maintain oval cell growth and differentiation. Under appropriate conditions, mesenchymal-epithelial cells differentiate in vitro into hepatocyte-like cells. In this study, we show that the adult rat liver harbors a small pool of endogenous mesenchymal-epithelial cells not recognized previously. In the quiescent state, these cells express both mesenchymal and epithelial cell markers. They behave like hepatic stem cells/progenitors with dual phenotype, exhibiting high plasticity and long-lasting proliferative activity.


Assuntos
Células Epiteliais/citologia , Células-Tronco Mesenquimais/citologia , Animais , Becaplermina , Transplante de Medula Óssea , Linhagem Celular , Proliferação de Células , Fibroblastos/metabolismo , Hepatócitos/metabolismo , Inflamação , Interferon gama/metabolismo , Interleucina-1/metabolismo , Lipopolissacarídeos/química , Fígado/lesões , Fígado/metabolismo , Regeneração Hepática , Masculino , Fenótipo , Proteínas Proto-Oncogênicas c-sis/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Endogâmicos F344 , Proteínas Recombinantes/metabolismo , Células-Tronco/citologia
3.
Carcinogenesis ; 36 Suppl 1: S160-83, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26106136

RESUMO

Potentially carcinogenic compounds may cause cancer through direct DNA damage or through indirect cellular or physiological effects. To study possible carcinogens, the fields of endocrinology, genetics, epigenetics, medicine, environmental health, toxicology, pharmacology and oncology must be considered. Disruptive chemicals may also contribute to multiple stages of tumor development through effects on the tumor microenvironment. In turn, the tumor microenvironment consists of a complex interaction among blood vessels that feed the tumor, the extracellular matrix that provides structural and biochemical support, signaling molecules that send messages and soluble factors such as cytokines. The tumor microenvironment also consists of many host cellular effectors including multipotent stromal cells/mesenchymal stem cells, fibroblasts, endothelial cell precursors, antigen-presenting cells, lymphocytes and innate immune cells. Carcinogens can influence the tumor microenvironment through effects on epithelial cells, the most common origin of cancer, as well as on stromal cells, extracellular matrix components and immune cells. Here, we review how environmental exposures can perturb the tumor microenvironment. We suggest a role for disrupting chemicals such as nickel chloride, Bisphenol A, butyltins, methylmercury and paraquat as well as more traditional carcinogens, such as radiation, and pharmaceuticals, such as diabetes medications, in the disruption of the tumor microenvironment. Further studies interrogating the role of chemicals and their mixtures in dose-dependent effects on the tumor microenvironment could have important general mechanistic implications for the etiology and prevention of tumorigenesis.


Assuntos
Exposição Ambiental/efeitos adversos , Substâncias Perigosas/efeitos adversos , Microambiente Tumoral/efeitos dos fármacos , Animais , Carcinogênese/induzido quimicamente , Humanos , Neoplasias/induzido quimicamente
4.
Carcinogenesis ; 36 Suppl 1: S254-96, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26106142

RESUMO

Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety 'Mode of Action' framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology.


Assuntos
Carcinogênese/induzido quimicamente , Carcinógenos Ambientais/efeitos adversos , Exposição Ambiental/efeitos adversos , Substâncias Perigosas/efeitos adversos , Neoplasias/induzido quimicamente , Neoplasias/etiologia , Animais , Humanos
5.
J Hepatol ; 62(6): 1341-8, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25617502

RESUMO

BACKGROUND & AIMS: The regenerative potential of the liver declines with age, this might be dependent on a decrease in the intensity of the stimulus and/or an increased refractoriness of the target. In the present study, we compared the in vivo growth capacity of young and old hepatocytes transplanted into the same host. METHODS: We utilized the retrorsine (RS)-based model for liver repopulation, which provides a specific and effective stimulus for transplanted hepatocytes. Rats of the dipeptidyl-peptidase type IV (DPP-IV)-deficient strain were given RS and were injected with a mix of hepatocytes isolated from either a 2-month old or an 18-month old donor. To follow the fate of transplanted cells, they were each identified through a specific tag: young hepatocytes expressed the green fluorescent protein (GFP(+)), while those from old donors were DPP-IV-positive. RESULTS: At 1 month post-transplantation, DPP-IV-positive clusters (derived from old donor) were consistently smaller than those GFP(+) (young donor); the cross sectional area of clusters was decreased by 50%, while the mean volume was reduced to 1/3. Furthermore, when 2/3 partial hepatectomy (PH) was performed, the S-phase response of old hepatocyte-derived clusters was only 30-40% compared to that observed in cluster originating from young hepatocytes. No markers of cell senescence were expressed in clusters of transplanted hepatocytes. CONCLUSIONS: This is the first direct evidence in vivo that hepatocytes in the aged liver express a cell-autonomous decline in their replicative capacity and in their regenerative response to PH compared to those from a young animal.


Assuntos
Envelhecimento/patologia , Hepatócitos/patologia , Regeneração Hepática/fisiologia , Envelhecimento/fisiologia , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Proliferação de Células/genética , Proliferação de Células/fisiologia , Senescência Celular/genética , Senescência Celular/fisiologia , Dipeptidil Peptidase 4/deficiência , Dipeptidil Peptidase 4/genética , Dipeptidil Peptidase 4/metabolismo , Hepatectomia , Hepatócitos/fisiologia , Hepatócitos/transplante , Regeneração Hepática/genética , Ratos , Ratos Endogâmicos F344 , Ratos Transgênicos , Proteínas de Sinalização YAP , beta Catenina/metabolismo
6.
Rapid Commun Mass Spectrom ; 29(19): 1733-48, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26331923

RESUMO

RATIONALE: We report the electrospray ionization mass spectrometry and low-energy collision-induced dissociation tandem mass spectrometry (CID-MS/MS) analysis of a pyrrolizidine alkaloid extract containing both retrorsine [C18H25NO6] and its N-oxide [C18H25NO7] and N-hydroxyl [C18H26NO7] derivatives measured with a QqTOFMS hybrid instrument. METHODS: A solution of the pyrrolizidine alkaloid extract containing retrorsine and its N-oxide and N-hydroxyl derivatives was directly infused into an electrospray ionization-quadrupole-time-of-flight (ESI-QTOF) mass spectrometer and product ion scans of the protonated molecules of each species were acquired. Labile protons of each compound were deuterated and computational energy calculations of the proposed structures of the product ions were used to determine the fragmentation pathways of retrorsine and its N-oxide and N-hydroxyl derivatives. RESULTS: ESI-MS of the pyrrolizidine alkaloid extract containing retrorsine and its N-oxide and N-hydroxyl derivatives afforded the protonated retrorsine [M1 + H](+) at m/z 352.1760 and the protonated retrorsine N-oxide [M2 + H](+) at m/z 368.1631 in addition to the formation of the unexpected protonated N-hydroxyl radical [M3 + H](+•) at m/z 369.1686. CID-MS/MS of this series of protonated molecules allowed the evaluation of their gas-phase fragmentations and the establishment of their fragmentation pathways. It was also found that several product ions could be assigned to different structures. Deuterium exchange and computational energy calculations allowed us to determine the most probable structures for the characterized product ions. CONCLUSIONS: To our knowledge, the identification of the protonated retrorsine N-hydroxyl radical [M3 + H](+•) is reported for the first time. In addition, the MS/MS results can be used for the identification of retrorsine and its N-oxide and N-hydroxyl derivatives in different complex biological matrices.


Assuntos
Cromatografia Líquida/métodos , Alcaloides de Pirrolizidina/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Modelos Moleculares
7.
Cell Tissue Res ; 356(2): 333-40, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24687306

RESUMO

The dynamics of cell renewal in the normal adult liver remains an unresolved issue. We investigate the possible contribution of a common biliary precursor cell pool to hepatocyte turnover in the chimeric long-term repopulated rat liver. The retrorsine (RS)-based model of massive liver repopulation was used. Animals not expressing the CD26 marker (CD26(-)) were injected with RS, followed by transplantation of 2 million syngeneic hepatocytes isolated from a normal CD26-expressing donor. Extensive (80-90%) replacement of resident parenchymal cells was observed at 1 year post-transplantation and persisted at 2 years, as expected. A panel of specific markers, including cytokeratin 7, OV6, EpCAM, claudin 7 and α-fetoprotein, was employed to locate the in situ putative progenitor and/or biliary epithelial cells in the stably repopulated liver. No overlap was observed between any of these markers and the CD26 tag identifying transplanted cells. Exposure to RS was not inhibitory to the putative progenitor and/or biliary epithelial cells, nor did we observe any evidence of cell fusion between these cells and the transplanted cell population. Given the long-term (>2 years) stability of the donor cell phenotype in this model of liver repopulation, the present findings suggest that hepatocyte turnover in the repopulated liver is fuelled by a cell lineage distinct from that of the biliary epithelium and relies largely on the differentiated parenchymal cell population. These results support the solid biological foundation of liver repopulation strategies based on the transplantation of isolated hepatocytes.


Assuntos
Ductos Biliares/citologia , Células Epiteliais/metabolismo , Epitélio/crescimento & desenvolvimento , Hepatócitos/transplante , Fígado/citologia , Animais , Antígenos de Diferenciação/biossíntese , Antígenos de Neoplasias/biossíntese , Antineoplásicos Fitogênicos/farmacologia , Moléculas de Adesão Celular/biossíntese , Linhagem da Célula , Claudinas/biossíntese , Dipeptidil Peptidase 4/biossíntese , Molécula de Adesão da Célula Epitelial , Queratina-7/biossíntese , Regeneração Hepática/efeitos dos fármacos , Alcaloides de Pirrolizidina/farmacologia , Ratos , Ratos Endogâmicos F344 , alfa-Fetoproteínas/biossíntese
8.
Hepatology ; 56(2): 760-8, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22392699

RESUMO

UNLABELLED: In the retrorsine (RS)-based model of massive liver repopulation, preexposure to this naturally occurring alkaloid is sufficient to prime normal host parenchymal cells to be slowly replaced by transplanted normal hepatocytes. The basis for this striking effect is yet to be fully elucidated. In the present studies the possible involvement of cell senescence was investigated. Fischer 344 rats were treated according to the RS-based protocol for hepatocyte transplantation, i.e., two doses of RS, 2 weeks apart, and were killed at 4 or 8 weeks after treatment. Control groups were given saline. Expression of senescence-associated beta-galactosidase was greatly induced in hepatocytes exposed to RS. In addition, several other changes that have been related to cell senescence were observed: these included markers of persistent activation of a DNA damage response, an increased expression of mammalian target of rapamycin, and positive regulators of the cell cycle, together with the induction of p21 and p27 cyclin-dependent kinase inhibitors. Furthermore, RS treatment increased levels of interleukin-6 in the liver, consistent with the activation of a senescence-associated secretory phenotype. CONCLUSION: These findings indicate that RS induces hepatocyte senescence in vivo. We propose that cell senescence and the associated secretory phenotype can contribute to the selective growth of transplanted hepatocytes in this system.


Assuntos
Senescência Celular/efeitos dos fármacos , Hepatócitos , Alcaloides de Pirrolizidina/farmacologia , Condicionamento Pré-Transplante/métodos , Animais , Antineoplásicos Fitogênicos/farmacologia , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/fisiologia , Divisão Celular/efeitos dos fármacos , Divisão Celular/fisiologia , Transplante de Células/métodos , Senescência Celular/fisiologia , Dano ao DNA/fisiologia , Modelos Animais de Doenças , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Hepatócitos/transplante , Interleucina-6/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Regeneração Hepática/efeitos dos fármacos , Regeneração Hepática/fisiologia , Masculino , Ratos , Ratos Endogâmicos F344 , beta-Galactosidase/metabolismo
9.
Eur J Cell Biol ; 102(3): 151340, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37423036

RESUMO

The biological and clinical significance of aberrant clonal expansions in aged tissues is being intensely discussed. Evidence is accruing that these clones often result from the normal dynamics of cell turnover in our tissues. The aged tissue microenvironment is prone to favour the emergence of specific clones with higher fitness partly because of an overall decline in cell intrinsic regenerative potential of surrounding counterparts. Thus, expanding clones in aged tissues need not to be mechanistically associated with the development of cancer, albeit this is a possibility. We suggest that growth pattern is a critical phenotypic attribute that impacts on the fate of such clonal proliferations. The acquisition of a better proliferative fitness, coupled with a defect in tissue pattern formation, could represent a dangerous mix setting the stage for their evolution towards neoplasia.


Assuntos
Envelhecimento , Neoplasias , Humanos , Idoso , Neoplasias/genética , Células Clonais , Microambiente Tumoral
10.
Front Public Health ; 11: 1145645, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37377545

RESUMO

This study aims to assess the safety profile of COVID-19 vaccines (mRNA and viral vector vaccines) in teenagers and young adults, as compared to Influenza and HPV vaccines, and to early data from Monkeypox vaccination in United States. Methods: We downloaded data from the Vaccine Adverse Event Reporting System (VAERS) and collected the following Serious Adverse Events (SAEs) reported for COVID-19, Influenza, HPV and Monkeypox vaccines: deaths, life-threatening illnesses, disabilities, hospitalizations. We restricted our analysis to the age groups 12-17 and 18-49, and to the periods December 2020 to July 2022 for COVID-19 vaccines, 2010-2019 for Influenza vaccines, 2006-2019 for HPV vaccines, June 1, 2022 to November 15, 2022 for Monkeypox vaccine. Rates were calculated in each age and sex group, based on an estimation of the number of administered doses. Results: Among adolescents the total number of reported SAEs per million doses for, respectively, COVID-19, Influenza and HPV vaccines were 60.73, 2.96, 14.62. Among young adults the reported SAEs rates for, respectively, COVID-19, Influenza, Monkeypox vaccines were 101.91, 5.35, 11.14. Overall, the rates of reported SAEs were significantly higher for COVID-19, resulting in a rate 19.60-fold higher than Influenza vaccines (95% C.I. 18.80-20.44), 4.15-fold higher than HPV vaccines (95% C.I. 3.91-4.41) and 7.89-fold higher than Monkeypox vaccine (95% C.I. 3.95-15.78). Similar trends were observed in teenagers and young adults with higher Relative Risks for male adolescents. Conclusion: The study identified a risk of SAEs following COVID-19 vaccination which was markedly higher compared to Influenza vaccination and substantially higher compared to HPV vaccination, both for teenagers and young adults, with an increased risk for the male adolescents group. Initial, early data for Monkeypox vaccination point to significantly lower rates of reported SAEs compared to those for COVID-19 vaccines. In conclusion these results stress the need of further studies to explore the bases for the above differences and the importance of accurate harm-benefit analyses, especially for adolescent males, to inform the COVID-19 vaccination campaign.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Vacinas contra Influenza , Vacinas contra Papillomavirus , Vacina Antivariólica , Adolescente , Humanos , Masculino , Adulto Jovem , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Vacinas contra Influenza/efeitos adversos , Influenza Humana/prevenção & controle , Mpox/prevenção & controle , Infecções por Papillomavirus/prevenção & controle , Vacinas contra Papillomavirus/efeitos adversos , Vacina Antivariólica/efeitos adversos , Estados Unidos/epidemiologia
11.
Biol Rev Camb Philos Soc ; 98(5): 1668-1686, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37157910

RESUMO

Cancers rely on multiple, heterogeneous processes at different scales, pertaining to many biomedical fields. Therefore, understanding cancer is necessarily an interdisciplinary task that requires placing specialised experimental and clinical research into a broader conceptual, theoretical, and methodological framework. Without such a framework, oncology will collect piecemeal results, with scant dialogue between the different scientific communities studying cancer. We argue that one important way forward in service of a more successful dialogue is through greater integration of applied sciences (experimental and clinical) with conceptual and theoretical approaches, informed by philosophical methods. By way of illustration, we explore six central themes: (i) the role of mutations in cancer; (ii) the clonal evolution of cancer cells; (iii) the relationship between cancer and multicellularity; (iv) the tumour microenvironment; (v) the immune system; and (vi) stem cells. In each case, we examine open questions in the scientific literature through a philosophical methodology and show the benefit of such a synergy for the scientific and medical understanding of cancer.


Assuntos
Neoplasias , Filosofia , Pesquisa , Estudos Interdisciplinares
12.
Hepatology ; 53(5): 1719-29, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21374689

RESUMO

UNLABELLED: Hepatocyte transplantation to treat liver disease is largely limited by the availability of useful cells. Human amniotic epithelial cells (hAECs) from term placenta express surface markers and gene characteristics of embryonic stem cells and have the ability to differentiate into all three germ layers, including tissues of endodermal origin (i.e., liver). Thus, hAECs could provide a source of stem cell-derived hepatocytes for transplantation. We investigated the differentiation of hAECs in vitro and after transplantation into the livers of severe combined immunodeficient (SCID)/beige mice. Moreover, we tested the ability of rat amniotic epithelial cells (rAECs) to replicate and differentiate upon transplantation into a syngenic model of liver repopulation. In vitro results indicate that the presence of extracellular matrix proteins together with a mixture of growth factors, cytokines, and hormones are required for differentiation of hAECs into hepatocyte-like cells. Differentiated hAECs expressed hepatocyte markers at levels comparable to those of fetal hepatocytes. They were able to metabolize ammonia, testosterone, and 17α-hydroxyprogesterone caproate, and expressed inducible fetal cytochromes. After transplantation into the liver of retrorsine (RS)-treated SCID/beige mice, naïve hAECs differentiated into hepatocyte-like cells that expressed mature liver genes such as cytochromes, plasma proteins, transporters, and other hepatic enzymes at levels equal to adult liver tissue. When transplanted in a syngenic animal pretreated with RS, rAECs were able to engraft and generate a progeny of cells with morphology and protein expression typical of mature hepatocytes. CONCLUSION: Amniotic epithelial cells possess the ability to differentiate into cells with characteristics of functional hepatocytes both in vitro and in vivo, thus representing a useful and noncontroversial source of cells for transplantation.


Assuntos
Âmnio/citologia , Diferenciação Celular , Células Epiteliais/citologia , Hepatócitos/citologia , Animais , Células Cultivadas , Humanos , Camundongos , Camundongos Endogâmicos C57BL
13.
Histochem Cell Biol ; 135(6): 581-91, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21528371

RESUMO

Overt neoplasia is often the end result of a long biological process beginning with the appearance of focal lesions of altered tissue morphology. While the putative clonal nature of focal lesions has often been emphasized, increasing attention is being devoted to the possible role of an altered growth pattern in the evolution of carcinogenesis. Here we compare the growth patterns of normal and nodular hepatocytes in a transplantation system that allows their selective clonal proliferation in vivo. Rats were pre-treated with retrorsine, which blocks the growth of resident hepatocytes, and were then transplanted with hepatocytes isolated from either normal liver or hepatocyte nodules. Both cell types were able to proliferate extensively in the recipient liver, as expected. However, their growth pattern was remarkably different. Clusters of normal hepatocytes integrated in the host liver, displaying a normal histology; however, transplanted nodular hepatocytes formed new hepatocyte nodules, with altered morphology and sharp demarcation from surrounding host liver. Both the expression and distribution of proteins involved in cell polarity, cell communication, and cell adhesion, including connexin 32, E-cadherin, and matrix metalloproteinase-2, were altered in clusters of nodular hepatocytes. Furthermore, we were able to show that down-regulation of connexin 32 and E-cadherin in nodular hepatocyte clusters was independent of growth rate. These results support the concept that a dominant pathway towards neoplastic disease in several organs involves defect(s) in tissue pattern formation.


Assuntos
Hepatócitos/citologia , Hepatócitos/transplante , Animais , Caderinas/genética , Caderinas/metabolismo , Divisão Celular , Transplante de Células , Conexinas/genética , Conexinas/metabolismo , Hepatectomia , Hepatócitos/metabolismo , Fígado/citologia , Fígado/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Alcaloides de Pirrolizidina/farmacologia , Ratos , Proteína beta-1 de Junções Comunicantes
14.
Cells ; 10(9)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34571918

RESUMO

Cancer often arises in the context of an altered tissue landscape. We argue that a major contribution of aging towards increasing the risk of neoplastic disease is conveyed through effects on the microenvironment. It is now firmly established that aged tissues are prone to develop clones of altered cells, most of which are compatible with a normal histological appearance. Such increased clonogenic potential results in part from a generalized decrease in proliferative fitness, favoring the emergence of more competitive variant clones. However, specific cellular genotypes can emerge with reduced cooperative and integrative capacity, leading to disruption of tissue architecture and paving the way towards progression to overt neoplastic phenotypes.


Assuntos
Envelhecimento , Transformação Celular Neoplásica/patologia , Neoplasias/patologia , Idoso , Humanos , Neoplasias/etiologia
15.
Neoplasia ; 23(10): 1029-1036, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34500336

RESUMO

Complex multicellular organisms require quantitative and qualitative assessments on each of their constitutive cell types to ensure coordinated and cooperative behavior towards overall functional proficiency. Cell competition represents one of the operating arms of such quality control mechanisms and relies on fitness comparison among individual cells. However, what is exactly included in the fitness equation for each cell type is still uncertain. Evidence will be discussed to suggest that the ability of the cell to integrate and collaborate within the organismal community represents an integral part of the best fitness phenotype. Thus, under normal conditions, cell competition will select against the emergence of altered cells with disruptive behavior towards tissue integrity and/or tissue pattern formation. On the other hand, the winner phenotype prevailing as a result of cell competition does not entail, by itself, any degree of growth autonomy. While cell competition per se should not be considered as a biological driving force towards the emergence of the neoplastic phenotype, it is possible that the molecular machinery involved in the winner/loser interaction could be hijacked by evolving cancer cell populations.

16.
Nutrition ; 86: 111177, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33631619

RESUMO

Moderate caloric restriction (CR) is an effective strategy to delay the onset of chronic disease states. Conversely, social isolation (SI) carries an increased risk of morbidity and mortality from several causes. The present studies were designed to investigate the long-term effect of the two combined exposures. Two-month-old male rats of the Fischer 344 strain were fed either ad libitum or under a regimen of CR, and each of the two animal sets were housed either in group or isolation. Food consumption and animal growth curves were as expected during the first 6 wk of observation. However, starting at 2 mo and continuing until the fifth month of follow up, rats exposed to both CR and SI showed signs of altered feeding behavior and were unable to complete their (already restricted) meal. Furthermore, altered behavior was accompanied by a corresponding decrease in growth rate until no further increase in body weight was observed. Restoration of group-housing conditions led to a reversal of this phenotype. We conclude that chronic moderate CR and SI synergize to induce anorexia-like behavior, representing a simple and reproducible model to study such an eating disorder.


Assuntos
Anorexia , Restrição Calórica , Animais , Anorexia/etiologia , Peso Corporal , Comportamento Alimentar , Masculino , Ratos , Isolamento Social
17.
NPJ Biofilms Microbiomes ; 7(1): 85, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34862421

RESUMO

Diet is a key factor influencing gut microbiota (GM) composition and functions, which in turn affect host health. Among dietary regimens, time-restricted (TR) feeding has been associated to numerous health benefits. The impact of TR feeding on the GM composition has been mostly explored by means of metagenomic sequencing. To date, however, little is known about the modulation of GM functions by this dietary regimen. Here, we analyzed the effects of TR feeding on GM functions by evaluating protein expression changes in a rat model through a metaproteomic approach. We observed that TR feeding has a relevant impact on GM functions, specifically leading to an increased abundance of several enzymes involved in carbohydrate and protein metabolism and expressed by Lactobacillus spp. and Akkermansia muciniphila. Taken together, these results contribute to deepening our knowledge about the key relationship between diet, GM, and health.


Assuntos
Microbioma Gastrointestinal , Microbiota , Akkermansia , Animais , Lactobacillus , Ratos , Verrucomicrobia
18.
Semin Cancer Biol ; 18(5): 322-9, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18456510

RESUMO

Overt neoplasia is often the result of a chronic disease process encompassing an extended segment of the lifespan of any species. A common pathway in the natural history of the disease is the appearance of focal proliferative lesions that are known to act as precursors for cancer development. It is becoming increasingly apparent that the emergence of such lesions is not a cell-autonomous phenomenon, but is heavily dependent on microenvironmental cues derived from the surrounding tissue. Specific alterations in the tissue microenvironment that can foster the selective growth of focal lesions are discussed herein. Furthermore, we argue that a fundamental property of focal lesions as it relates to their precancerous nature lies in their altered growth pattern as compared to the tissue where they reside. The resulting altered tissue architecture translates into the emergence of a unique tumor microenvironment inside these lesions, associated with altered blood vessels and/or blood supply which in turn can trigger biochemical and metabolic changes fueling tumor progression. A deeper understanding of the role(s) of tissue and tumor microenvironments in the pathogenesis of cancer is essential to design more effective strategies for the management of this disease.


Assuntos
Neoplasias/patologia , Neoplasias/fisiopatologia , Carcinógenos Ambientais/metabolismo , Instabilidade Cromossômica , Dano ao DNA , Predisposição Genética para Doença , Humanos , Mutação , Estadiamento de Neoplasias , Neoplasias/genética
19.
World J Hepatol ; 12(8): 475-484, 2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32952874

RESUMO

Cell competition is now a well-established quality control strategy to optimize cell and tissue fitness in multicellular organisms. While pursuing this goal, it is also effective in selecting against altered/defective cells with putative (pre)-neoplastic potential, thereby edging the risk of cancer development. The flip side of the coin is that the molecular machinery driving cell competition can also be co-opted by neoplastic cell populations to expand unchecked, outside the boundaries of tissue homeostatic control. This review will focus on information that begins to emerge regarding the role of cell competition in liver physiology and pathology. Liver repopulation by normal transplanted hepatocytes is an interesting field of investigation in this regard. The biological coordinates of this process share many features suggesting that cell competition is a driving force for the clearance of endogenous damaged hepatocytes by normal donor-derived cells, as previously proposed. Intriguing analogies between liver repopulation and carcinogenesis will be briefly discussed and the potential dual role of cell competition, as a barrier or a spur to neoplastic development, will be considered. Cell competition is in essence a cooperative strategy organized at tissue level. One facet of such cooperative attitude is expressed in the elimination of altered cells which may represent a threat to the organismal community. On the other hand, the society of cells can be disrupted by the emergence of selfish clones, exploiting the molecular bar codes of cell competition, thereby paving their way to uncontrolled growth.

20.
Nutrients ; 12(2)2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31973116

RESUMO

A growing amount of evidence suggests that the downregulation of protein synthesis is an adaptive response during physiological aging, which positively contributes to longevity and can be modulated by nutritional interventions like caloric restriction (CR). The expression of ribosomal RNA (rRNA) is one of the main determinants of translational rate, and epigenetic modifications finely contribute to its regulation. Previous reports suggest that hypermethylation of ribosomal DNA (rDNA) locus occurs with aging, although with some species- and tissue- specificity. In the present study, we experimentally measured DNA methylation of three regions (the promoter, the 5' of the 18S and the 5' of 28S sequences) in the rDNA locus in liver tissues from rats at two, four, 10, and 18 months. We confirm previous findings, showing age-related hypermethylation, and describe, for the first time, that this gain in methylation also occurs in human hepatocytes. Furthermore, we show that age-related hypermethylation is enhanced in livers of rat upon CR at two and 10 months, and that at two months a trend towards the reduction of rRNA expression occurs. Collectively, our results suggest that CR modulates age-related regulation of methylation at the rDNA locus, thus providing an epigenetic readout of the pro-longevity effects of CR.


Assuntos
Envelhecimento/metabolismo , Restrição Calórica , Metilação de DNA/fisiologia , Loci Gênicos/fisiologia , RNA Ribossômico/metabolismo , Animais , DNA Ribossômico/metabolismo , Epigênese Genética , Humanos , Fígado/metabolismo , Longevidade/fisiologia , Masculino , Regiões Promotoras Genéticas/fisiologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA