Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Phys Chem A ; 127(32): 6677-6686, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37552554

RESUMO

Ab initio calculations of alkaline diatomic molecule interactions with alkaline atoms provide detailed information about their electronic structure, vibrational frequencies, and spectroscopic properties, which are difficult to measure experimentally. This knowledge can aid in designing and interpreting experiments and guide the development of computational models and advanced dynamical calculation. Using the quantum chemistry ab initio methods based on multi-reference configuration interaction with Davidson correction (MCSCF/MRCI + Q), atomic effective core potentials, core-polarization potentials, and the interactions between the sodium atom and the NaRb diatomic molecule are investigated. To describe the potential energy surfaces of the RbNa2 system, we introduce two geometries described in the Z-matrix coordinates (Re, R, θ). Potential energy surfaces of the ground state 12A' and the first excited state 22A' were calculated for different approach directions of the sodium atom to the NaRb molecule and two geometries were considered. The first geometry is where the Na atom approaches the Rb atom of the RbNa dimer, and the second one is when it approaches the Na atom of the RbNa dimer. Global minima of the ground and first excited states and conical intersections between these states are determined for both geometries. The RbNa dimer in interaction with the sodium atom is found to be strongly attractive in its first excited state, which may be important for the experimenters particularly in the field of cold alkali polar dimers. Thereafter, the potential energy curves correlated to the lowest-lying dissociation limits are calculated in the linear form for the two geometrical cases (angle θ at 180°) and the atomic arrangement effect is observed.

2.
Phys Chem Chem Phys ; 24(31): 18511-18522, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35894602

RESUMO

The BeCs+ system represents a possible future candidate for the realization of samples of cold or ultra-cold molecular ion species that have not yet been investigated experimentally or theoretically. With the aim of highlighting the spectroscopic and electronic structure of the cesium and beryllium cation BeCs+, we theoretically investigate ground and low lying excited states of 1,3Σ+, 1,3Π and 1,3Δ symmetries below the first nine asymptotic limits dissociating into Be+(2s) + Cs(6s, 6p, 5d) and Be(2s2, 2s2p, 2s3s, 2p2) + Cs+. We used a quantum chemistry approach based on a semi-empirical pseudo potential for Be2+ and Cs+ cores, core polarization potentials (CPP), large Gaussian basis sets and full configuration interaction (FCI) method for the valence electrons. Additional calculations have been performed for the ground state using CCSD(T)/CI methods with different basis sets. Adiabatic potential energy curves, spectroscopic constants, vibrational levels, and permanent and transition dipole moments are reported in this work. Furthermore, the elastic scattering properties at low energy for both ground 11Σ+ and second excited states 31Σ+, of BeCs+ are theoretically investigated, and isotopic effects on cold and ultra-cold energy collisions are also detected. Vibrational lifetimes of the ground state 11Σ+ are calculated taking into account both spontaneous and stimulated emissions and also the absorption induced by black body radiation at room temperature (T = 300 K). Vibrational radiative lifetimes for the first 21Σ+ and second 31Σ+ excited states are also calculated and extensively analyzed. We found that the radiative lifetimes of the lower vibrational levels of the 11Σ+ state have an order of magnitude of seconds (s), while those of 21Σ+ and 31Σ+ states have an order of nanoseconds (ns). The Franck-Condon factors are also calculated for transitions from the low lying excited 21Σ+, 31Σ+, 11Π states to the ground state 11Σ+. We found that the favourite vibrational transition to the 11Σ+(v = 0) ground state is obtained for 11Π (v''' = 0)-11Σ+(v = 0) with a diagonal structure and a large Franck-Condon factor value of 0.94. This Franck-Condon factor value is sufficiently large to make the BeCs+ system a favorable candidate for direct laser cooling.

3.
ACS Omega ; 6(45): 30335-30343, 2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34805665

RESUMO

The electronic structure of BeSe and BeTe molecules has been investigated using the ab initio CASSCF/(MRCI + Q) method at the spin-free and spin-orbit level. The potential energy curves, the permanent dipole moment, the spectroscopic constants T e, R e, ωe, and B e, and the dissociation energy D e are determined in addition to the vertical transition energy Tv. The molecules' percentages of ionic character are deduced, and the trends of the spectroscopic constants of the two molecules are compared and justified. A ro-vibrational study is performed using the canonical function approach to calculate the constants E v, B v, and D v and the turning points R min and R max. All the ground-state vibrational levels have also been investigated. The radiative lifetimes of vibrational transitions among the electronic ground states are also discussed. The results for BeSe have been compared with the previously published data while those for BeTe molecules are presented here for the first time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA