Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 255
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ther ; 32(10): 3422-3432, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39108095

RESUMO

Clinical trials investigating the potential of mesenchymal stromal cells (MSCs) for the treatment of inflammatory diseases, such as acute respiratory distress syndrome (ARDS), have been disappointing, with less than 50% of patients responding to treatment. Licensed MSCs show enhanced therapeutic efficacy in response to cytokine-mediated activation signals. There are two distinct sub-phenotypes of ARDS: hypo- and hyper-inflammatory. We hypothesized that pre-licensing MSCs in a hyper-inflammatory ARDS environment would enhance their therapeutic efficacy in acute lung inflammation (ALI). Serum samples from patients with ARDS were segregated into hypo- and hyper-inflammatory categories based on interleukin (IL)-6 levels. MSCs were licensed with pooled serum from patients with hypo- or hyper-inflammatory ARDS or healthy serum controls. Our findings show that hyper-inflammatory ARDS pre-licensed MSC conditioned medium (MSC-CMHyper) led to a significant enrichment in tight junction expression and enhanced barrier integrity in lung epithelial cells in vitro and in vivo in a vascular endothelial growth factor (VEGF)-dependent manner. Importantly, while both MSC-CMHypo and MSC-CMHyper significantly reduced IL-6 and tumor necrosis factor alpha (TNF-α) levels in the bronchoalveolar lavage fluid (BALF) of lipopolysaccharide (LPS)-induced ALI mice, only MSC-CMHyper significantly reduced lung permeability and overall clinical outcomes including weight loss and clinical score. Thus, the hypo- and hyper-inflammatory ARDS environments may differentially influence MSC cytoprotective and immunomodulatory functions.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Síndrome do Desconforto Respiratório , Fator A de Crescimento do Endotélio Vascular , Animais , Humanos , Masculino , Camundongos , Lesão Pulmonar Aguda/terapia , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/metabolismo , Microambiente Celular , Meios de Cultivo Condicionados/farmacologia , Meios de Cultivo Condicionados/metabolismo , Modelos Animais de Doenças , Interleucina-6/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Pneumonia/metabolismo , Pneumonia/terapia , Pneumonia/etiologia , Síndrome do Desconforto Respiratório/terapia , Síndrome do Desconforto Respiratório/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
2.
Am J Respir Crit Care Med ; 209(7): 789-797, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38324017

RESUMO

There is considerable interest in the potential for cell-based therapies, particularly mesenchymal stromal cells (MSCs) and their products, as a therapy for acute respiratory distress syndrome (ARDS). MSCs exert effects via diverse mechanisms including reducing excessive inflammation by modulating neutrophil, macrophage and T-cell function, decreasing pulmonary permeability and lung edema, and promoting tissue repair. Clinical studies indicate that MSCs are safe and well tolerated, with promising therapeutic benefits in specific clinical settings, leading to regulatory approvals of MSCs for specific indications in some countries.This perspective reassesses the therapeutic potential of MSC-based therapies for ARDS given insights from recent cell therapy trials in both COVID-19 and in 'classic' ARDS, and discusses studies in graft-vs.-host disease, one of the few licensed indications for MSC therapies. We identify important unknowns in the current literature, address challenges to clinical translation, and propose an approach to facilitate assessment of the therapeutic promise of MSC-based therapies for ARDS.


Assuntos
Lesão Pulmonar Aguda , COVID-19 , Transplante de Células-Tronco Mesenquimais , Síndrome do Desconforto Respiratório , Humanos , Pulmão , Lesão Pulmonar Aguda/etiologia , Terapia Baseada em Transplante de Células e Tecidos
3.
Am J Respir Crit Care Med ; 209(1): 37-47, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37487152

RESUMO

Background: Since publication of the 2012 Berlin definition of acute respiratory distress syndrome (ARDS), several developments have supported the need for an expansion of the definition, including the use of high-flow nasal oxygen, the expansion of the use of pulse oximetry in place of arterial blood gases, the use of ultrasound for chest imaging, and the need for applicability in resource-limited settings. Methods: A consensus conference of 32 critical care ARDS experts was convened, had six virtual meetings (June 2021 to March 2022), and subsequently obtained input from members of several critical care societies. The goal was to develop a definition that would 1) identify patients with the currently accepted conceptual framework for ARDS, 2) facilitate rapid ARDS diagnosis for clinical care and research, 3) be applicable in resource-limited settings, 4) be useful for testing specific therapies, and 5) be practical for communication to patients and caregivers. Results: The committee made four main recommendations: 1) include high-flow nasal oxygen with a minimum flow rate of ⩾30 L/min; 2) use PaO2:FiO2 ⩽ 300 mm Hg or oxygen saturation as measured by pulse oximetry SpO2:FiO2 ⩽ 315 (if oxygen saturation as measured by pulse oximetry is ⩽97%) to identify hypoxemia; 3) retain bilateral opacities for imaging criteria but add ultrasound as an imaging modality, especially in resource-limited areas; and 4) in resource-limited settings, do not require positive end-expiratory pressure, oxygen flow rate, or specific respiratory support devices. Conclusions: We propose a new global definition of ARDS that builds on the Berlin definition. The recommendations also identify areas for future research, including the need for prospective assessments of the feasibility, reliability, and prognostic validity of the proposed global definition.


Assuntos
Síndrome do Desconforto Respiratório , Humanos , Estudos Prospectivos , Reprodutibilidade dos Testes , Síndrome do Desconforto Respiratório/diagnóstico , Síndrome do Desconforto Respiratório/terapia , Oximetria , Oxigênio
4.
Crit Care Med ; 52(9): e473-e484, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39145711

RESUMO

OBJECTIVES: To clarify the mechanistic basis for the success or failure of noninvasive ventilation (NIV) in acute hypoxemic respiratory failure (AHRF). DESIGN: We created digital twins based on mechanistic computational models of individual patients with AHRF. SETTING: Interdisciplinary Collaboration in Systems Medicine Research Network. SUBJECTS: We used individual patient data from 30 moderate-to-severe AHRF patients who had failed high-flow nasal cannula (HFNC) therapy and subsequently underwent a trial of NIV. INTERVENTIONS: Using the digital twins, we evaluated lung mechanics, quantified the separate contributions of external support and patient respiratory effort to lung injury indices, and investigated their relative impact on NIV success or failure. MEASUREMENTS AND MAIN RESULTS: In digital twins of patients who successfully completed/failed NIV, after 2 hours of the trial the mean (sd) of the change in total lung stress was -10.9 (6.2)/-0.35 (3.38) cm H2O, mechanical power -13.4 (12.2)/-1.0 (5.4) J/min, and total lung strain 0.02 (0.24)/0.16 (0.30). In the digital twins, positive end-expiratory pressure (PEEP) produced by HFNC was similar to that set during NIV. In digital twins of patients who failed NIV vs. those who succeeded, intrinsic PEEP was 3.5 (0.6) vs. 2.3 (0.8) cm H2O, inspiratory pressure support was 8.3 (5.9) vs. 22.3 (7.2) cm H2O, and tidal volume was 10.9 (1.2) vs. 9.4 (1.8) mL/kg. In digital twins, successful NIV increased respiratory system compliance +25.0 (16.4) mL/cm H2O, lowered inspiratory muscle pressure -9.7 (9.6) cm H2O, and reduced the contribution of patient spontaneous breathing to total driving pressure by 57.0%. CONCLUSIONS: In digital twins of AHRF patients, successful NIV improved lung mechanics, lowering respiratory effort and indices associated with lung injury. NIV failed in patients for whom only low levels of positive inspiratory pressure support could be applied without risking patient self-inflicted lung injury due to excessive tidal volumes.


Assuntos
Hipóxia , Ventilação não Invasiva , Insuficiência Respiratória , Humanos , Ventilação não Invasiva/métodos , Insuficiência Respiratória/terapia , Masculino , Feminino , Hipóxia/terapia , Idoso , Pessoa de Meia-Idade , Falha de Tratamento , Mecânica Respiratória/fisiologia , Doença Aguda , Resultado do Tratamento
5.
Respir Res ; 25(1): 312, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39153979

RESUMO

BACKGROUND: Ventilation management may differ between COVID-19 ARDS (COVID-ARDS) patients and patients with pre-COVID ARDS (CLASSIC-ARDS); it is uncertain whether associations of ventilation management with outcomes for CLASSIC-ARDS also exist in COVID-ARDS. METHODS: Individual patient data analysis of COVID-ARDS and CLASSIC-ARDS patients in six observational studies of ventilation, four in the COVID-19 pandemic and two pre-pandemic. Descriptive statistics were used to compare epidemiology and ventilation characteristics. The primary endpoint were key ventilation parameters; other outcomes included mortality and ventilator-free days and alive (VFD-60) at day 60. RESULTS: This analysis included 6702 COVID-ARDS patients and 1415 CLASSIC-ARDS patients. COVID-ARDS patients received lower median VT (6.6 [6.0 to 7.4] vs 7.3 [6.4 to 8.5] ml/kg PBW; p < 0.001) and higher median PEEP (12.0 [10.0 to 14.0] vs 8.0 [6.0 to 10.0] cm H2O; p < 0.001), at lower median ΔP (13.0 [10.0 to 15.0] vs 16.0 [IQR 12.0 to 20.0] cm H2O; p < 0.001) and higher median Crs (33.5 [26.6 to 42.1] vs 28.1 [21.6 to 38.4] mL/cm H2O; p < 0.001). Following multivariable adjustment, higher ΔP had an independent association with higher 60-day mortality and less VFD-60 in both groups. Higher PEEP had an association with less VFD-60, but only in COVID-ARDS patients. CONCLUSIONS: Our findings show important differences in key ventilation parameters and associations thereof with outcomes between COVID-ARDS and CLASSIC-ARDS. TRIAL REGISTRATION: Clinicaltrials.gov (identifier NCT05650957), December 14, 2022.


Assuntos
COVID-19 , Pneumonia , Respiração Artificial , Síndrome do Desconforto Respiratório , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , COVID-19/mortalidade , COVID-19/terapia , Síndrome do Desconforto Respiratório/mortalidade , Síndrome do Desconforto Respiratório/terapia , Resultado do Tratamento , Pneumonia/complicações
6.
Am J Respir Crit Care Med ; 208(3): 256-269, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37154608

RESUMO

Rationale: Mesenchymal stromal cells (MSCs) may modulate inflammation, promoting repair in coronavirus disease (COVID-19)-related acute respiratory distress syndrome (ARDS). Objectives: We investigated the safety and efficacy of ORBCEL-C (CD362 [cluster of differentiation 362]-enriched, umbilical cord-derived MSCs) in COVID-19-related ARDS. Methods: In this multicenter, randomized, double-blind, allocation-concealed, placebo-controlled trial (NCT03042143), patients with moderate to severe COVID-19-related ARDS were randomized to receive ORBCEL-C (400 million cells) or placebo (Plasma-Lyte 148). The primary safety and efficacy outcomes were the incidence of serious adverse events and oxygenation index at Day 7, respectively. Secondary outcomes included respiratory compliance, driving pressure, PaO2:FiO2 ratio, and Sequential Organ Failure Assessment score. Clinical outcomes relating to duration of ventilation, lengths of ICU and hospital stays, and mortality were collected. Long-term follow-up included diagnosis of interstitial lung disease at 1 year and significant medical events and mortality at 2 years. Transcriptomic analysis was performed on whole blood at Days 0, 4, and 7. Measurements and Main Results: Sixty participants were recruited (final analysis: n = 30 received ORBCEL-C, n = 29 received placebo; 1 participant in the placebo group withdrew consent). Six serious adverse events occurred in the ORBCEL-C group and three in the placebo group (risk ratio, 2.9 [95% confidence interval, 0.6-13.2]; P = 0.25). Day 7 mean (SD) oxygenation index did not differ (ORBCEL-C, 98.3 [57.2] cm H2O/kPa; placebo, 96.6 [67.3] cm H2O/kPa). There were no differences in secondary surrogate outcomes or in mortality at Day 28, Day 90, 1 year, or 2 years. There was no difference in the prevalence of interstitial lung disease at 1 year or significant medical events up to 2 years. ORBCEL-C modulated the peripheral blood transcriptome. Conclusion: ORBCEL-C MSCs were safe in subjects with moderate to severe COVID-19-related ARDS but did not improve surrogates of pulmonary organ dysfunction.


Assuntos
COVID-19 , Doenças Pulmonares Intersticiais , Síndrome do Desconforto Respiratório , Humanos , Pulmão , Células Estromais
7.
Br J Anaesth ; 131(3): 607-616, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37208282

RESUMO

BACKGROUND: Tracheal intubation is a high-risk procedure in the critically ill, with increased intubation failure rates and a high risk of other adverse events. Videolaryngoscopy might improve intubation outcomes in this population, but evidence remains conflicting, and its impact on adverse event rates is debated. METHODS: This is a subanalysis of a large international prospective cohort of critically ill patients (INTUBE Study) performed from 1 October 2018 to 31 July 2019 and involving 197 sites from 29 countries across five continents. Our primary aim was to determine the first-pass intubation success rates of videolaryngoscopy. Secondary aims were characterising (a) videolaryngoscopy use in the critically ill patient population and (b) the incidence of severe adverse effects compared with direct laryngoscopy. RESULTS: Of 2916 patients, videolaryngoscopy was used in 500 patients (17.2%) and direct laryngoscopy in 2416 (82.8%). First-pass intubation success was higher with videolaryngoscopy compared with direct laryngoscopy (84% vs 79%, P=0.02). Patients undergoing videolaryngoscopy had a higher frequency of difficult airway predictors (60% vs 40%, P<0.001). In adjusted analyses, videolaryngoscopy increased the probability of first-pass intubation success, with an OR of 1.40 (95% confidence interval [CI] 1.05-1.87). Videolaryngoscopy was not significantly associated with risk of major adverse events (odds ratio 1.24, 95% CI 0.95-1.62) or cardiovascular events (odds ratio 0.78, 95% CI 0.60-1.02). CONCLUSIONS: In critically ill patients, videolaryngoscopy was associated with higher first-pass intubation success rates, despite being used in a population at higher risk of difficult airway management. Videolaryngoscopy was not associated with overall risk of major adverse events. CLINICAL TRIAL REGISTRATION: NCT03616054.


Assuntos
Estado Terminal , Laringoscópios , Humanos , Estado Terminal/terapia , Intubação Intratraqueal/efeitos adversos , Intubação Intratraqueal/métodos , Laringoscopia/efeitos adversos , Laringoscopia/métodos , Estudos Prospectivos
8.
Am J Respir Crit Care Med ; 206(4): 449-458, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35536310

RESUMO

Rationale: Cardiovascular instability/collapse is a common peri-intubation event in patients who are critically ill. Objectives: To identify potentially modifiable variables associated with peri-intubation cardiovascular instability/collapse (i.e., systolic arterial pressure <65 mm Hg [once] or <90 mm Hg for >30 minutes; new/increased vasopressor requirement; fluid bolus >15 ml/kg, or cardiac arrest). Methods: INTUBE (International Observational Study to Understand the Impact and Best Practices of Airway Management In Critically Ill Patients) was a multicenter prospective cohort study of patients who were critically ill and undergoing tracheal intubation in a convenience sample of 197 sites from 29 countries across five continents from October 1, 2018, to July 31, 2019. Measurements and Main Results: A total of 2,760 patients were included in this analysis. Peri-intubation cardiovascular instability/collapse occurred in 1,199 out of 2,760 patients (43.4%). Variables associated with this event were older age (odds ratio [OR], 1.02; 95% confidence interval [CI], 1.02-1.03), higher heart rate (OR, 1.008; 95% CI, 1.004-1.012), lower systolic blood pressure (OR, 0.98; 95% CI, 0.98-0.99), lower oxygen saturation as measured by pulse oximetry/FiO2 before induction (OR, 0.998; 95% CI, 0.997-0.999), and the use of propofol as an induction agent (OR, 1.28; 95% CI, 1.05-1.57). Patients with peri-intubation cardiovascular instability/collapse were at a higher risk of ICU mortality with an adjusted OR of 2.47 (95% CI, 1.72-3.55), P < 0.001. The inverse probability of treatment weighting method identified the use of propofol as the only factor independently associated with cardiovascular instability/collapse (OR, 1.23; 95% CI, 1.02-1.49). When administered before induction, vasopressors (OR, 1.33; 95% CI, 0.84-2.11) or fluid boluses (OR, 1.17; 95% CI, 0.96-1.44) did not reduce the incidence of cardiovascular instability/collapse. Conclusions: Peri-intubation cardiovascular instability/collapse was associated with an increased risk of both ICU and 28-day mortality. The use of propofol for induction was identified as a modifiable intervention significantly associated with cardiovascular instability/collapse.Clinical trial registered with clinicaltrials.gov (NCT03616054).


Assuntos
Propofol , Choque , Estado Terminal/terapia , Humanos , Intubação Intratraqueal/efeitos adversos , Intubação Intratraqueal/métodos , Propofol/uso terapêutico , Estudos Prospectivos , Choque/tratamento farmacológico , Vasoconstritores/uso terapêutico
9.
BMC Anesthesiol ; 23(1): 239, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454135

RESUMO

OBJECTIVES: To develop and assess a system for shared ventilation using clinically available components to individualize tidal volumes. DESIGN: Evaluation and in vitro validation study SETTING: Ventilator shortage during the SARS-CoV-2 pandemic. PARTICIPANTS: The team consisted of physicians, bioengineers, computer programmers, and medical technology professionals. METHODS: Using clinically available components, a system of ventilation consisting of two ventilatory limbs was assembled and connected to a ventilator. Monitors for each limb were developed using open-source software. Firstly, the effect of altering ventilator settings on tidal volumes delivered to each limb was determined. Secondly, the impact of altering the compliance and resistance of one limb on the tidal volumes delivered to both limbs was analysed. Experiments were repeated three times to determine system variability. RESULTS: The system permitted accurate and reproducible titration of tidal volumes to each limb over a range of ventilator settings and simulated lung conditions. Alteration of ventilator inspiratory pressures, of respiratory rates, and I:E ratio resulted in very similar tidal volumes delivered to each limb. Alteration of compliance and resistance in one limb resulted in reproducible alterations in tidal volume to that test lung, with little change to tidal volumes in the other lung. All tidal volumes delivered were reproducible. CONCLUSIONS: We demonstrate the reliability of a shared ventilation system assembled using commonly available clinical components that allows titration of individual tidal volumes. This system may be useful as a strategy of last resort for Covid-19, or other mass casualty situations, where the need for ventilators exceeds supply.


Assuntos
COVID-19 , Humanos , Volume de Ventilação Pulmonar , COVID-19/terapia , Reprodutibilidade dos Testes , SARS-CoV-2 , Ventiladores Mecânicos , Respiração Artificial/métodos
10.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36834784

RESUMO

Lung macrophages (Mφs) are essential for pulmonary innate immunity and host defense due to their dynamic polarization and phenotype shifts. Mesenchymal stromal cells (MSCs) have secretory, immunomodulatory, and tissue-reparative properties and have shown promise in acute and chronic inflammatory lung diseases and in COVID-19. Many beneficial effects of MSCs are mediated through their interaction with resident alveolar and pulmonary interstitial Mφs. Bidirectional MSC-Mφ communication is achieved through direct contact, soluble factor secretion/activation, and organelle transfer. The lung microenvironment facilitates MSC secretion of factors that result in Mφ polarization towards an immunosuppressive M2-like phenotype for the restoration of tissue homeostasis. M2-like Mφ in turn can affect the MSC immune regulatory function in MSC engraftment and tissue reparatory effects. This review article highlights the mechanisms of crosstalk between MSCs and Mφs and the potential role of their interaction in lung repair in inflammatory lung diseases.


Assuntos
COVID-19 , Lesão Pulmonar , Células-Tronco Mesenquimais , Humanos , Macrófagos , Macrófagos Alveolares
11.
Int J Mol Sci ; 24(9)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37175761

RESUMO

Antimicrobial-resistant (AMR) bacteria, such as Klebsiella species, are an increasingly common cause of hospital-acquired pneumonia, resulting in high mortality and morbidity. Harnessing the host immune response to AMR bacterial infection using mesenchymal stem cells (MSCs) is a promising approach to bypass bacterial AMR mechanisms. The administration of single doses of naïve MSCs to ARDS clinical trial patient cohorts has been shown to be safe, although efficacy is unclear. The study tested whether repeated MSC dosing and/or preactivation, would attenuate AMR Klebsiella pneumonia-induced established pneumonia. Rat models of established K. pneumoniae-induced pneumonia were randomised to receive intravenous naïve or cytomix-preactivated umbilical cord MSCs as a single dose at 24 h post pneumonia induction with or without a subsequent dose at 48 h. Physiological indices, bronchoalveolar lavage (BAL), and tissues were obtained at 72 h post pneumonia induction. A single dose of naïve MSCs was largely ineffective, whereas two doses of MSCs were effective in attenuating Klebsiella pneumosepsis, improving lung compliance and oxygenation, while reducing bacteria and injury in the lung. Cytomix-preactivated MSCs were superior to naïve MSCs. BAL neutrophil counts and activation were reduced, and apoptosis increased. MSC therapy reduced cytotoxic BAL T cells, and increased CD4+/CD8+ ratios. Systemically, granulocytes, classical monocytes, and the CD4+/CD8+ ratio were reduced, and nonclassical monocytes were increased. Repeated doses of MSCs-particularly preactivated MSCs-enhance their therapeutic potential in a clinically relevant model of established AMR K. pneumoniae-induced pneumosepsis.


Assuntos
Anti-Infecciosos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Pneumonia , Ratos , Animais , Klebsiella pneumoniae , Roedores , Pneumonia/tratamento farmacológico , Anti-Infecciosos/farmacologia
12.
Respir Res ; 23(1): 101, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35473715

RESUMO

BACKGROUND: Airway pressure release ventilation (APRV) is widely available on mechanical ventilators and has been proposed as an early intervention to prevent lung injury or as a rescue therapy in the management of refractory hypoxemia. Driving pressure ([Formula: see text]) has been identified in numerous studies as a key indicator of ventilator-induced-lung-injury that needs to be carefully controlled. [Formula: see text] delivered by the ventilator in APRV is not directly measurable in dynamic conditions, and there is no "gold standard" method for its estimation. METHODS: We used a computational simulator matched to data from 90 patients with acute respiratory distress syndrome (ARDS) to evaluate the accuracy of three "at-the-bedside" methods for estimating ventilator [Formula: see text] during APRV. RESULTS: Levels of [Formula: see text] delivered by the ventilator in APRV were generally within safe limits, but in some cases exceeded levels specified by protective ventilation strategies. A formula based on estimating the intrinsic positive end expiratory pressure present at the end of the APRV release provided the most accurate estimates of [Formula: see text]. A second formula based on assuming that expiratory flow, volume and pressure decay mono-exponentially, and a third method that requires temporarily switching to volume-controlled ventilation, also provided accurate estimates of true [Formula: see text]. CONCLUSIONS: Levels of [Formula: see text] delivered by the ventilator during APRV can potentially exceed levels specified by standard protective ventilation strategies, highlighting the need for careful monitoring. Our results show that [Formula: see text] delivered by the ventilator during APRV can be accurately estimated at the bedside using simple formulae that are based on readily available measurements.


Assuntos
Síndrome do Desconforto Respiratório , Lesão Pulmonar Induzida por Ventilação Mecânica , Simulação por Computador , Pressão Positiva Contínua nas Vias Aéreas/métodos , Humanos , Síndrome do Desconforto Respiratório/diagnóstico , Síndrome do Desconforto Respiratório/terapia , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle , Ventiladores Mecânicos
13.
Br J Clin Pharmacol ; 88(7): 3272-3287, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35106809

RESUMO

There is significant interest in the potential for nebulised unfractionated heparin (UFH), as a novel therapy for patients with COVID-19 induced acute hypoxaemic respiratory failure requiring invasive ventilation. The scientific and biological rationale for nebulised heparin stems from the evidence for extensive activation of coagulation resulting in pulmonary microvascular thrombosis in COVID-19 pneumonia. Nebulised delivery of heparin to the lung may limit alveolar fibrin deposition and thereby limit progression of lung injury. Importantly, laboratory studies show that heparin can directly inactivate the SARS-CoV-2 virus, thereby prevent its entry into and infection of mammalian cells. UFH has additional anti-inflammatory and mucolytic properties that may be useful in this context. METHODS AND INTERVENTION: The Can nebulised HepArin Reduce morTality and time to Extubation in Patients with COVID-19 Requiring invasive ventilation Meta-Trial (CHARTER-MT) is a collaborative prospective individual patient data analysis of on-going randomised controlled clinical trials across several countries in five continents, examining the effects of inhaled heparin in patients with COVID-19 requiring invasive ventilation on various endpoints. Each constituent study will randomise patients with COVID-19 induced respiratory failure requiring invasive ventilation. Patients are randomised to receive nebulised heparin or standard care (open label studies) or placebo (blinded placebo-controlled studies) while under invasive ventilation. Each participating study collect a pre-defined minimum dataset. The primary outcome for the meta-trial is the number of ventilator-free days up to day 28 day, defined as days alive and free from invasive ventilation.


Assuntos
Tratamento Farmacológico da COVID-19 , Ventilação não Invasiva , Insuficiência Respiratória , Extubação , Heparina , Humanos , Pulmão , Ensaios Clínicos Controlados Aleatórios como Assunto , Insuficiência Respiratória/induzido quimicamente , SARS-CoV-2 , Resultado do Tratamento
14.
Br J Clin Pharmacol ; 88(6): 2802-2813, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34984714

RESUMO

AIMS: To determine the safety and efficacy-potential of inhaled nebulised unfractionated heparin (UFH) in the treatment of hospitalised patients with COVID-19. METHODS: Retrospective, uncontrolled multicentre single-arm case series of hospitalised patients with laboratory-confirmed COVID-19, treated with inhaled nebulised UFH (5000 IU q8h, 10 000 IU q4h, or 25 000 IU q6h) for 6 ± 3 (mean ± standard deviation) days. Outcomes were activated partial thromboplastin time (APTT) before treatment (baseline) and highest-level during treatment (peak), and adverse events including bleeding. Exploratory efficacy outcomes were oxygenation, assessed by ratio of oxygen saturation to fraction of inspired oxygen (FiO2 ) and FiO2 , and the World Health Organisation modified ordinal clinical scale. RESULTS: There were 98 patients included. In patients on stable prophylactic or therapeutic systemic anticoagulant therapy but not receiving therapeutic UFH infusion, APTT levels increased from baseline of 34 ± 10 seconds to a peak of 38 ± 11 seconds (P < .0001). In 3 patients on therapeutic UFH infusion, APTT levels did not significantly increase from baseline of 72 ± 20 to a peak of 84 ± 28 seconds (P = .17). Two patients had serious adverse events: bleeding gastric ulcer requiring transfusion and thigh haematoma; both were on therapeutic anticoagulation. Minor bleeding occurred in 16 patients, 13 of whom were on therapeutic anticoagulation. The oxygen saturation/FiO2 ratio and the FiO2 worsened before and improved after commencement of inhaled UFH (change in slope, P < .001). CONCLUSION: Inhaled nebulised UFH in hospitalised patients with COVID-19 was safe. Although statistically significant, inhaled nebulised UFH did not produce a clinically relevant increase in APTT (peak values in the normal range). Urgent randomised evaluation of nebulised UFH in patients with COVID-19 is warranted and several studies are currently underway.


Assuntos
Tratamento Farmacológico da COVID-19 , Heparina , Anticoagulantes , Hemorragia/induzido quimicamente , Hemorragia/tratamento farmacológico , Heparina/efeitos adversos , Humanos , Tempo de Tromboplastina Parcial , Estudos Retrospectivos
15.
Crit Care ; 26(1): 84, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35346319

RESUMO

BACKGROUND: Awake prone positioning (APP) improves oxygenation in coronavirus disease (COVID-19) patients and, when successful, may decrease the risk of intubation. However, factors associated with APP success remain unknown. In this secondary analysis, we aimed to assess whether APP can reduce intubation rate in patients with COVID-19 and to focus on the factors associated with success. METHODS: In this multicenter randomized controlled trial, conducted in three high-acuity units, we randomly assigned patients with COVID-19-induced acute hypoxemic respiratory failure (AHRF) requiring high-flow nasal cannula (HFNC) oxygen to APP or standard care. Primary outcome was intubation rate at 28 days. Multivariate analyses were performed to identify the predictors associated to treatment success (survival without intubation). RESULTS: Among 430 patients randomized, 216 were assigned to APP and 214 to standard care. The APP group had a lower intubation rate (30% vs 43%, relative risk [RR] 0.70; CI95 0.54-0.90, P = 0.006) and shorter hospital length of stay (11 interquartile range [IQR, 9-14] vs 13 [IQR, 10-17] days, P = 0.001). A respiratory rate ≤ 25 bpm at enrollment, an increase in ROX index > 1.25 after first APP session, APP duration > 8 h/day, and a decrease in lung ultrasound score ≥ 2 within the first 3 days were significantly associated with treatment success for APP. CONCLUSION: In patients with COVID-19-induced AHRF treated by HFNC, APP reduced intubation rate and improved treatment success. A longer APP duration is associated with APP success, while the increase in ROX index and decrease in lung ultrasound score after APP can also help identify patients most likely to benefit. TRIAL REGISTRATION: This study was retrospectively registered in ClinicalTrials.gov at July 20, 2021. Identification number NCT04477655. https://clinicaltrials.gov/ct2/show/NCT04477655?term=PRO-CARF&draw=2&rank=1.


Assuntos
COVID-19 , Insuficiência Respiratória , COVID-19/complicações , COVID-19/terapia , Cânula , Humanos , Decúbito Ventral , Insuficiência Respiratória/complicações , Insuficiência Respiratória/terapia , Vigília
16.
Crit Care ; 26(1): 141, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35581612

RESUMO

BACKGROUND: The role of neuromuscular blocking agents (NMBAs) in coronavirus disease 2019 (COVID-19) acute respiratory distress syndrome (ARDS) is not fully elucidated. Therefore, we aimed to investigate in COVID-19 patients with moderate-to-severe ARDS the impact of early use of NMBAs on 90-day mortality, through propensity score (PS) matching analysis. METHODS: We analyzed a convenience sample of patients with COVID-19 and moderate-to-severe ARDS, admitted to 244 intensive care units within the COVID-19 Critical Care Consortium, from February 1, 2020, through October 31, 2021. Patients undergoing at least 2 days and up to 3 consecutive days of NMBAs (NMBA treatment), within 48 h from commencement of IMV were compared with subjects who did not receive NMBAs or only upon commencement of IMV (control). The primary objective in the PS-matched cohort was comparison between groups in 90-day in-hospital mortality, assessed through Cox proportional hazard modeling. Secondary objectives were comparisons in the numbers of ventilator-free days (VFD) between day 1 and day 28 and between day 1 and 90 through competing risk regression. RESULTS: Data from 1953 patients were included. After propensity score matching, 210 cases from each group were well matched. In the PS-matched cohort, mean (± SD) age was 60.3 ± 13.2 years and 296 (70.5%) were male and the most common comorbidities were hypertension (56.9%), obesity (41.1%), and diabetes (30.0%). The unadjusted hazard ratio (HR) for death at 90 days in the NMBA treatment vs control group was 1.12 (95% CI 0.79, 1.59, p = 0.534). After adjustment for smoking habit and critical therapeutic covariates, the HR was 1.07 (95% CI 0.72, 1.61, p = 0.729). At 28 days, VFD were 16 (IQR 0-25) and 25 (IQR 7-26) in the NMBA treatment and control groups, respectively (sub-hazard ratio 0.82, 95% CI 0.67, 1.00, p = 0.055). At 90 days, VFD were 77 (IQR 0-87) and 87 (IQR 0-88) (sub-hazard ratio 0.86 (95% CI 0.69, 1.07; p = 0.177). CONCLUSIONS: In patients with COVID-19 and moderate-to-severe ARDS, short course of NMBA treatment, applied early, did not significantly improve 90-day mortality and VFD. In the absence of definitive data from clinical trials, NMBAs should be indicated cautiously in this setting.


Assuntos
Tratamento Farmacológico da COVID-19 , Bloqueadores Neuromusculares , Síndrome do Desconforto Respiratório , Idoso , Feminino , Humanos , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-Idade , Bloqueadores Neuromusculares/uso terapêutico , Pontuação de Propensão , Respiração Artificial , Síndrome do Desconforto Respiratório/tratamento farmacológico
17.
Br J Anaesth ; 128(6): 1052-1058, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35410790

RESUMO

BACKGROUND: Optimal respiratory support in early COVID-19 pneumonia is controversial and remains unclear. Using computational modelling, we examined whether lung injury might be exacerbated in early COVID-19 by assessing the impact of conventional oxygen therapy (COT), high-flow nasal oxygen therapy (HFNOT), continuous positive airway pressure (CPAP), and noninvasive ventilation (NIV). METHODS: Using an established multi-compartmental cardiopulmonary simulator, we first modelled COT at a fixed FiO2 (0.6) with elevated respiratory effort for 30 min in 120 spontaneously breathing patients, before initiating HFNOT, CPAP, or NIV. Respiratory effort was then reduced progressively over 30-min intervals. Oxygenation, respiratory effort, and lung stress/strain were quantified. Lung-protective mechanical ventilation was also simulated in the same cohort. RESULTS: HFNOT, CPAP, and NIV improved oxygenation compared with conventional therapy, but also initially increased total lung stress and strain. Improved oxygenation with CPAP reduced respiratory effort but lung stress/strain remained elevated for CPAP >5 cm H2O. With reduced respiratory effort, HFNOT maintained better oxygenation and reduced total lung stress, with no increase in total lung strain. Compared with 10 cm H2O PEEP, 4 cm H2O PEEP in NIV reduced total lung stress, but high total lung strain persisted even with less respiratory effort. Lung-protective mechanical ventilation improved oxygenation while minimising lung injury. CONCLUSIONS: The failure of noninvasive ventilatory support to reduce respiratory effort may exacerbate pulmonary injury in patients with early COVID-19 pneumonia. HFNOT reduces lung strain and achieves similar oxygenation to CPAP/NIV. Invasive mechanical ventilation may be less injurious than noninvasive support in patients with high respiratory effort.


Assuntos
COVID-19 , Lesão Pulmonar , Ventilação não Invasiva , Insuficiência Respiratória , COVID-19/terapia , Simulação por Computador , Humanos , Oxigênio , Insuficiência Respiratória/terapia
18.
Semin Respir Crit Care Med ; 43(3): 346-368, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35896391

RESUMO

Acute respiratory distress syndrome (ARDS) is a severe form of respiratory failure burden by high hospital mortality. No specific pharmacologic treatment is currently available and its ventilatory management is a key strategy to allow reparative and regenerative lung tissue processes. Unfortunately, a poor management of mechanical ventilation can induce ventilation induced lung injury (VILI) caused by physical and biological forces which are at play. Different parameters have been described over the years to assess lung injury severity and facilitate optimization of mechanical ventilation. Indices of lung injury severity include variables related to gas exchange abnormalities, ventilatory setting and respiratory mechanics, ventilation intensity, and the presence of lung hyperinflation versus derecruitment. Recently, specific indexes have been proposed to quantify the stress and the strain released over time using more comprehensive algorithms of calculation such as the mechanical power, and the interaction between driving pressure (DP) and respiratory rate (RR) in the novel DP multiplied by four plus RR [(4 × DP) + RR] index. These new parameters introduce the concept of ventilation intensity as contributing factor of VILI. Ventilation intensity should be taken into account to optimize protective mechanical ventilation strategies, with the aim to reduce intensity to the lowest level required to maintain gas exchange to reduce the potential for VILI. This is further gaining relevance in the current era of phenotyping and enrichment strategies in ARDS.


Assuntos
Lesão Pulmonar , Síndrome do Desconforto Respiratório , Humanos , Pulmão , Respiração Artificial/efeitos adversos , Síndrome do Desconforto Respiratório/terapia , Mecânica Respiratória
19.
Semin Respir Crit Care Med ; 43(3): 379-389, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35679873

RESUMO

The definition of acute respiratory distress syndrome (ARDS), has evolved since it was first described in 1967 by Ashbaugh and Petty to the current "Berlin" definition of ARDS developed in 2012 by an expert panel, that provided clarification on the definition of "acute," and on the cardiac failure criteria. It expanded the definition to include patients receiving non-invasive ventilation, and removed the term "acute lung injury" and added a requirement of patients to be receiving a minimum 5 cmH2O expiratory pressure.Since 2012, a series of observational cohort studies have generated insights into the utility and robustness of this definition. This review will examine novel insights into the epidemiology of ARDS, failures in ARDS diagnosis, the role of lung imaging in ARDS, the novel ARDS cohort that is not invasively ventilated, lung compliance profiles in patients with ARDS, sex differences that exist in ARDS management and outcomes, the progression of ARDS following initial diagnosis, and the clinical profile and outcomes of confirmed versus resolved ARDS. Furthermore, we will discuss studies that challenge the utility of distinguishing ARDS from other causes of acute hypoxemic respiratory failure (AHRF) and identify issues that may need to be addressed in a revised definition.


Assuntos
Lesão Pulmonar Aguda , Síndrome do Desconforto Respiratório , Insuficiência Respiratória , Feminino , Humanos , Masculino , Estudos Observacionais como Assunto , Estudos Prospectivos , Respiração Artificial/métodos , Síndrome do Desconforto Respiratório/diagnóstico
20.
Semin Respir Crit Care Med ; 43(3): 335-345, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35451046

RESUMO

Computer simulation offers a fresh approach to traditional medical research that is particularly well suited to investigating issues related to mechanical ventilation. Patients receiving mechanical ventilation are routinely monitored in great detail, providing extensive high-quality data-streams for model design and configuration. Models based on such data can incorporate very complex system dynamics that can be validated against patient responses for use as investigational surrogates. Crucially, simulation offers the potential to "look inside" the patient, allowing unimpeded access to all variables of interest. In contrast to trials on both animal models and human patients, in silico models are completely configurable and reproducible; for example, different ventilator settings can be applied to an identical virtual patient, or the same settings applied to different patients, to understand their mode of action and quantitatively compare their effectiveness. Here, we review progress on the mathematical modeling and computer simulation of human anatomy, physiology, and pathophysiology in the context of mechanical ventilation, with an emphasis on the clinical applications of this approach in various disease states. We present new results highlighting the link between model complexity and predictive capability, using data on the responses of individual patients with acute respiratory distress syndrome to changes in multiple ventilator settings. The current limitations and potential of in silico modeling are discussed from a clinical perspective, and future challenges and research directions highlighted.


Assuntos
Respiração Artificial , Síndrome do Desconforto Respiratório , Simulação por Computador , Humanos , Respiração Artificial/métodos , Síndrome do Desconforto Respiratório/terapia , Ventiladores Mecânicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA