Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Eur Radiol ; 30(5): 2995-3003, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32002637

RESUMO

OBJECTIVE: A new computer tool is proposed to distinguish between focal nodular hyperplasia (FNH) and an inflammatory hepatocellular adenoma (I-HCA) using contrast-enhanced ultrasound (CEUS). The new method was compared with the usual qualitative analysis. METHODS: The proposed tool embeds an "optical flow" algorithm, designed to mimic the human visual perception of object transport in image series, to quantitatively analyse apparent microbubble transport parameters visible on CEUS. Qualitative (visual) and quantitative (computer-assisted) CEUS data were compared in a cohort of adult patients with either FNH or I-HCA based on pathological and radiological results. For quantitative analysis, several computer-assisted classification models were tested and subjected to cross-validation. The accuracies, area under the receiver-operating characteristic curve (AUROC), sensitivity and specificity, positive predictive values (PPVs), negative predictive values (NPVs), false predictive rate (FPRs) and false negative rate (FNRs) were recorded. RESULTS: Forty-six patients with FNH (n = 29) or I-HCA (n = 17) with 47 tumours (one patient with 2 I-HCA) were analysed. The qualitative diagnostic parameters were accuracy = 93.6%, AUROC = 0.94, sensitivity = 94.4%, specificity = 93.1%, PPV = 89.5%, NPV = 96.4%, FPR = 6.9% and FNR = 5.6%. The quantitative diagnostic parameters were accuracy = 95.9%, AUROC = 0.97, sensitivity = 93.4%, specificity = 97.6%, PPV = 95.3%, NPV = 96.7%, FPR = 2.4% and FNR = 6.6%. CONCLUSIONS: Microbubble transport patterns evident on CEUS are valuable diagnostic indicators. Machine-learning algorithms analysing such data facilitate the diagnosis of FNH and I-HCA tumours. KEY POINTS: • Distinguishing between focal nodular hyperplasia and an inflammatory hepatocellular adenoma using dynamic contrast-enhanced ultrasound is sometimes difficult. • Microbubble transport patterns evident on contrast-enhanced sonography are valuable diagnostic indicators. • Machine-learning algorithms analysing microbubble transport patterns facilitate the diagnosis of FNH and I-HCA.


Assuntos
Adenoma de Células Hepáticas/diagnóstico por imagem , Carcinoma Hepatocelular/diagnóstico por imagem , Meios de Contraste , Diagnóstico por Computador/métodos , Hiperplasia Nodular Focal do Fígado/diagnóstico por imagem , Aumento da Imagem/métodos , Neoplasias Hepáticas/diagnóstico por imagem , Microbolhas , Ultrassonografia/métodos , Adulto , Idoso , Confiabilidade dos Dados , Diagnóstico Diferencial , Feminino , Seguimentos , Humanos , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Sensibilidade e Especificidade , Adulto Jovem
2.
J Acoust Soc Am ; 136(3): 1430, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25190416

RESUMO

An algorithm is presented for rapid simulation of high-intensity focused ultrasound (HIFU) fields. Essentially, the method combines ray tracing with Monte Carlo integration to evaluate the Rayleigh-Sommerfeld integral. A large number of computational particles, phonons, are distributed among the elements of a phase-array transducer. The phonons are emitted into random directions and are propagated along trajectories computed with the ray tracing method. As the simulation progresses, an improving stochastic estimate of the acoustic field is obtained. The method can adapt to complicated geometries, and it is well suited to parallelization. The method is verified against reference simulations and pressure measurements from an ex vivo porcine thoracic tissue sample. Results are presented for acceleration with graphics processing units (GPUs). The method is expected to serve in applications, where flexibility and rapid computation time are crucial, in particular clinical HIFU treatment planning.

3.
Phys Med Biol ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39079560

RESUMO

OBJECTIVE: In medical imaging, it is often crucial to accurately assess and correct movement during image-guided therapy. Deformable image registration (DIR) consists in estimating the required spatial transformation to align a moving image with a fixed one. However, it is acknowledged that for DIR methods, boundary conditions applied to the solution are critical in preventing mis-registration. This poses an issue particularly when areas of interest are located near the image border. Despite the extensive research on registration techniques, relatively few have addressed the issue of boundary conditions in the context of medical DIR. Our aim is a step towards customizing boundary conditions to suit the diverse registration tasks at hand. Approach: We analyze the behavior of two typical global boundary conditions: homogeneous Dirichlet and homogeneous Neumann. We propose a generic, locally adaptive, Robin-type condition enabling to balance between Dirichlet and Neumann boundary conditions, depending on incoming/outgoing flow fields on the image boundaries. The proposed framework is entirely automatized through the determination of a reduced set of hyperparameters optimized via energy minimization. Main results: The proposed approach was tested on a mono-modal CT thorax registration task and an abdominal CT-to-MRI registration task. For the first task, we observed a relative improvement in terms of target registration error of up to 12% (mean 4%), compared to homogeneous Dirichlet and homogeneous Neumann. For the second task, the automatic framework provides results close to the best achievable. Significance: This study underscores the importance of tailoring the registration problem at the image boundaries. In this research, we introduce a novel method to adapt the boundary conditions on a voxel-by-voxel basis, yielding optimized results in two distinct tasks: mono-modal CT thorax registration and abdominal CT-to-MRI registration. The proposed framework enables optimized boundary conditions in image registration without prior assumptions regarding the images or the motion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA