Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochem Cell Biol ; 101(4): 326-360, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37040564

RESUMO

Graduate students are vital to the creation of research and innovation in Canada. The National Graduate Student Finance Survey was launched in 2021 by the Ottawa Science Policy Network to investigate the financial realities of Canadian graduate students. Closing in April 2022, the survey received 1305 responses from graduate students representing various geographical locations, years of study, fields of education, and demographic backgrounds. The results capture a snapshot into graduate student finances, including an in-depth analysis of stipends, scholarships, debt, tuition, and living expenses. In its entirety, we found that the majority of graduate students are facing serious financial concerns. This is largely due to stagnant funding for students both from federal and provincial granting agencies and from within their institutions. This reality is even worse for international students, members of historically underrepresented communities, and those with dependents, all of whom experience additional challenges that impact their financial security. Based on our findings, we propose several recommendations to the Tri-Council agencies (Natural Sciences and Engineering Research Council, Social Science and Humanities Research Council, and Canadian Institute for Health Research) and academic institutions to strengthen graduate student finances and help sustain the future of research in Canada.


Assuntos
Estresse Financeiro , Estudantes , Humanos , Canadá
2.
PLoS Genet ; 16(11): e1009220, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33253187

RESUMO

Cellular metabolism is tightly regulated by many signaling pathways and processes, including lysine acetylation of proteins. While lysine acetylation of metabolic enzymes can directly influence enzyme activity, there is growing evidence that lysine acetylation can also impact protein localization. As the Saccharomyces cerevisiae lysine acetyltransferase complex NuA4 has been implicated in a variety of metabolic processes, we have explored whether NuA4 controls the localization and/or protein levels of metabolic proteins. We performed a high-throughput microscopy screen of over 360 GFP-tagged metabolic proteins and identified 23 proteins whose localization and/or abundance changed upon deletion of the NuA4 scaffolding subunit, EAF1. Within this, three proteins were required for glycogen synthesis and 14 proteins were associated with the mitochondria. We determined that in eaf1Δ cells the transcription of glycogen biosynthesis genes is upregulated resulting in increased proteins and glycogen production. Further, in the absence of EAF1, mitochondria are highly fused, increasing in volume approximately 3-fold, and are chaotically distributed but remain functional. Both the increased glycogen synthesis and mitochondrial elongation in eaf1Δ cells are dependent on Bcy1, the yeast regulatory subunit of PKA. Surprisingly, in the absence of EAF1, Bcy1 localization changes from being nuclear to cytoplasmic and PKA activity is altered. We found that NuA4-dependent localization of Bcy1 is dependent on a lysine residue at position 313 of Bcy1. However, the glycogen accumulation and mitochondrial elongation phenotypes of eaf1Δ, while dependent on Bcy1, were not fully dependent on Bcy1-K313 acetylation state and subcellular localization of Bcy1. As NuA4 is highly conserved with the human Tip60 complex, our work may inform human disease biology, revealing new avenues to investigate the role of Tip60 in metabolic diseases.


Assuntos
Histona Acetiltransferases/metabolismo , Mitocôndrias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Acetilação , Glicogênio/biossíntese , Histona Acetiltransferases/genética , Lisina/metabolismo , Dinâmica Mitocondrial/genética , Processamento de Proteína Pós-Traducional , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Deleção de Sequência
3.
Mol Cell Biol ; : 1-16, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38961766

RESUMO

Here, we report a novel role for the yeast lysine acetyltransferase NuA4 in regulating phospholipid availability for organelle morphology. Disruption of the NuA4 complex results in 70% of cells displaying nuclear deformations and nearly 50% of cells exhibiting vacuolar fragmentation. Cells deficient in NuA4 also show severe defects in the formation of nuclear-vacuole junctions (NJV), as well as a decrease in piecemeal microautophagy of the nucleus (PMN). To determine the cause of these defects we focused on Pah1, an enzyme that converts phosphatidic acid into diacylglycerol, favoring accumulation of lipid droplets over phospholipids that are used for membrane expansion. NuA4 subunit Eaf1 was required for Pah1 localization to the inner nuclear membrane and artificially tethering of Pah1 to the nuclear membrane rescued nuclear deformation and vacuole fragmentation defects, but not defects related to the formation of NVJs. Mutation of a NuA4-dependent acetylation site on Pah1 also resulted in aberrant Pah1 localization and defects in nuclear morphology and NVJ. Our work suggests a critical role for NuA4 in organelle morphology that is partially mediated through the regulation of Pah1 subcellular localization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA