RESUMO
Adiponectin is a metabolic link between adipose tissue and insulin action, mediating part of obesity-associated insulin resistance and type 2 diabetes. Two adiponectin receptors have been identified, and we investigated whether sequence variations in adiponectin receptor 1 (ADIPOR1) and adiponectin receptor 2 (ADIPOR2) genes could contribute to the genetic risk for type 2 diabetes in a case-control study of 1,498 Caucasian subjects. We sequenced the putative functional regions of the two genes in 48 subjects and selected single nucleotide polymorphisms (SNPs) from the public database. Five SNPs in ADIPOR1 and 12 in ADIPOR2 were tested for association with type 2 diabetes. No SNP of ADIPOR1 showed association in any of the samples from the French population. In contrast, three SNPs of ADIPOR2 showed nominal evidence for association with type 2 diabetes before correction for multiple testing (odds ratio [OR] 1.29-1.37, P = 0.034-0.014); only rs767870, located in intron 6, was replicated in an additional diabetes dataset (n = 636, OR 1.29, P = 0.020) with significant allelic association from the overall meta-analysis of 2,876 subjects (adjusted OR 1.25 [95% CI 1.07-1.45], P = 0.0051). In conclusion, our data suggest a modest contribution of ADIPOR2 variants in diabetes risk in the French population.
Assuntos
Diabetes Mellitus Tipo 2/genética , Polimorfismo de Nucleotídeo Único , Receptores de Superfície Celular/genética , População Branca/genética , Adulto , Idoso , Feminino , Haplótipos , Humanos , Masculino , Pessoa de Meia-Idade , Receptores de AdiponectinaRESUMO
Although cross-sectional studies have associated the Pro12Ala polymorphism of PPARG with type 2 diabetes, prospective studies offer more opportunities to investigate genetic variants. Associations between PPARG polymorphisms with insulin resistance parameters and with the 6-year incidence of impaired fasting glucose or type 2 diabetes were tested in 3,914 French Caucasians from the DESIR (Data From an Epidemiological Study on the Insulin Resistance Syndrome) cohort. In subjects normoglycemic at baseline (n = 3,498), the 6-year risk of hyperglycemia was lower in PPARG Ala carriers (odds ratio [OR] vs. ProPro = 0.66 [95% CI 0.44-0.99], P = 0.046 adjusted for sex, age, and BMI). Similar results were found with the PPARG C1431T single nucleotide polymorphism (SNP; adjusted OR = 0.65 [0.44-0.96], P = 0.036). Both alleles are in strong linkage disequilibrium (D' = 0.669, P < 0.001). The baseline mean fasting insulin and homeostasis model assessment of insulin resistance (HOMA-IR) were lower in Ala carriers compared with ProPro homozygotes (P = 0.001 for both), with smaller increases in mean insulin and HOMA-IR during follow-up (P = 0.007 and 0.018, respectively). No association with insulin levels or HOMA-IR was found with C1431T. In this cohort, the APM1 G-11391A SNP is associated with the development of hyperglycemia. The combined effects of PPARG Pro12Ala and APM1 G-11391A SNPs showed no interaction on the risk of 6-year hyperglycemia. The PPARG Ala allele showed a relatively high protective effect in developing hyperglycemia and hyperinsulinemia during a 6-year period. Cumulative rather than synergistic effects of PPARG Pro12Ala and APM1 SNPs on diabetes risk are suggested.