Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Biomed Sci ; 24(1): 45, 2017 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-28716076

RESUMO

BACKGROUND: Although vertebrates are bilaterally symmetric organisms, their internal organs are distributed asymmetrically along a left-right axis. Disruption of left-right axis asymmetric patterning often occurs in human genetic disorders. In zebrafish embryos, Kupffer's vesicle, like the mouse node, breaks symmetry by inducing asymmetric expression of the Nodal-related gene, spaw, in the left lateral plate mesoderm (LPM). Spaw then stimulates transcription of itself and downstream genes, including lft1, lft2, and pitx2, specifically in the left side of the diencephalon, heart and LPM. This developmental step is essential to establish subsequent asymmetric organ positioning. In this study, we evaluated the role of krüppel-like factor 8 (klf8) in regulating left-right asymmetric patterning in zebrafish embryos. METHODS: Zebrafish klf8 expression was disrupted by both morpholino antisense oligomer-mediated knockdown and a CRISPR-Cas9 system. Whole-mount in situ hybridization was conducted to evaluate gene expression patterns of Nodal signalling components and the positions of heart and visceral organs. Dorsal forerunner cell number was evaluated in Tg(sox17:gfp) embryos and the length and number of cilia in Kupffer's vesicle were analyzed by immunocytochemistry using an acetylated tubulin antibody. RESULTS: Heart jogging, looping and visceral organ positioning were all defective in zebrafish klf8 morphants. At the 18-22 s stages, klf8 morphants showed reduced expression of genes encoding Nodal signalling components (spaw, lft1, lft2, and pitx2) in the left LPM, diencephalon, and heart. Co-injection of klf8 mRNA with klf8 morpholino partially rescued spaw expression. Furthermore, klf8 but not klf8△zf overexpressing embryos showed dysregulated bilateral expression of Nodal signalling components at late somite stages. At the 10s stage, klf8 morphants exhibited reductions in length and number of cilia in Kupffer's vesicle, while at 75% epiboly, fewer dorsal forerunner cells were observed. Interestingly, klf8 mutant embryos, generated by a CRISPR-Cas9 system, showed bilateral spaw expression in the LPM at late somite stages. This observation may be partly attributed to compensatory upregulation of klf12b, because klf12b knockdown reduced the percentage of klf8 mutants exhibiting bilateral spaw expression. CONCLUSIONS: Our results demonstrate that zebrafish Klf8 regulates left-right asymmetric patterning by modulating both Kupffer's vesicle morphogenesis and spaw expression in the left LPM.


Assuntos
Padronização Corporal/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Fator de Crescimento Transformador beta2/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Animais , Morfogênese/genética , Fator de Crescimento Transformador beta2/metabolismo
2.
Biochem J ; 473(14): 2205-18, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27222589

RESUMO

Mammalian anterior gradient 2 (AGR2), an endoplasmic reticulum (ER) protein disulfide-isomerase (PDI), is involved in cancer cell growth and metastasis, asthma and inflammatory bowel disease (IBD). Mice lacking Agr2 exhibit decreased Muc2 protein in intestinal goblet cells, abnormal Paneth cell development, ileitis and colitis. Despite its importance in cancer biology and inflammatory diseases, the mechanisms regulating agr2 expression in the gastrointestinal tract remain unclear. In the present study, we investigated the mechanisms that control agr2 expression in the pharynx and intestine of zebrafish by transient/stable transgenesis, coupled with motif mutation, morpholino knockdown, mRNA rescue and ChIP. A 350 bp DNA sequence with a hypoxia-inducible response element (HRE) and forkhead-response element (FHRE) within a region -4.5 to -4.2 kbp upstream of agr2 directed EGFP expression specifically in the pharynx and intestine. No EGFP expression was detected in the intestinal goblet cells of Tg(HREM:EGFP) or Tg(FHREM:EGFP) embryos with mutated HRE or FHRE, whereas EGFP was expressed in the pharynx of Tg(HREM:EGFP), but not Tg(FHREM:EGFP), embryos. Morpholino knockdown of foxa1 (forkhead box A1) reduced agr2 levels in the pharynx, whereas knockdown of foxa2 or hif1ab decreased intestinal agr2 expression and affected the differentiation and maturation of intestinal goblet cells. These results demonstrate that Foxa1 regulates agr2 expression in the pharynx, whereas both Foxa2 and Hif1ab control agr2 expression in intestinal goblet cells to regulate maturation of these cells.


Assuntos
Embrião não Mamífero/metabolismo , Células Caliciformes/metabolismo , Fator 3-beta Nuclear de Hepatócito/metabolismo , Mucosa Intestinal/metabolismo , Animais , Animais Geneticamente Modificados , Imunoprecipitação da Cromatina , Retículo Endoplasmático/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Fator 3-alfa Nuclear de Hepatócito/genética , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Fator 3-beta Nuclear de Hepatócito/genética , Humanos , Hibridização In Situ , Camundongos , Mucoproteínas , Proteínas Oncogênicas , Faringe/metabolismo , Proteínas/genética , Proteínas/metabolismo , Peixe-Zebra
3.
Biochim Biophys Acta ; 1839(6): 425-37, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24768923

RESUMO

AGR2 is a member of the protein disulfide isomerase (PDI) family, which is implicated in cancer cell growth and metastasis, asthma, and inflammatory bowel disease. Despite the contributions of this protein to several biological processes, the regulatory mechanisms controlling expression of the AGR2 gene in different organs remain unclear. Zebrafish anterior gradient 2 (agr2) is expressed in several organs, including the otic vesicles that contain mucus-secreting cells. To elucidate the regulatory mechanisms controlling agr2 expression in otic vesicles, we generated a Tg(-6.0 k agr2:EGFP) transgenic fish line that expressed EGFP in a pattern recapitulating that of agr2. Double immunofluorescence studies were used to demonstrate that Agr2 and GFP colocalize in the semicircular canals and supporting cells of all sensory patches in the otic vesicles of Tg(-6.0 k agr2:EGFP) embryos. Transient/stable transgenic analyses coupled with 5'-end deletion revealed that a 100 bp sequence within the -2.6 to -2.5 kbp region upstream of agr2 directs EGFP expression specifically in the otic vesicles. Two HMG-binding motifs were detected in this region. Mutation of these motifs prevented EGFP expression. Furthermore, EGFP expression in the otic vesicles was prevented by knockdown of the sox10 gene. This corresponded with decreased agr2 expression in the otic vesicles of sox10 morphants during different developmental stages. Electrophoretic mobility shift assays were used to show that Sox10 binds to HMG-binding motifs located within the -2.6 to -2.5 kbp region upstream of agr2. These results demonstrate that agr2 expression in the otic vesicles of zebrafish embryos is regulated by Sox10.


Assuntos
Orelha/fisiologia , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição SOXE/metabolismo , Canais Semicirculares/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Ensaio de Desvio de Mobilidade Eletroforética , Embrião não Mamífero/citologia , Imunofluorescência , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hibridização In Situ , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Transcrição SOXE/genética , Canais Semicirculares/citologia , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA