Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Environ Res ; 255: 119179, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38768882

RESUMO

Exposure to particulate matter (PM) pollution is a significant health risk, driving the search for innovative metrics that more accurately reflect the potential harm to human health. Among these, oxidative potential (OP) has emerged as a promising health-based metric, yet its application and relevance across different environments remain to be further explored. This study, set in two high-altitude Bolivian cities, aims to identify the most significant sources of PM-induced oxidation in the lungs and assess the utility of OP in assessing PM health impacts. Utilizing two distinct assays, OPDTT and OPDCFH, we measured the OP of PM samples, while also examining the associations between PM mass, OP, and black carbon (BC) concentrations with hospital visits for acute respiratory infections (ARI) and pneumonia over a range of exposure lags (0-2 weeks) using a Poisson regression model adjusted for meteorological conditions. The analysis also leveraged Positive Matrix Factorization (PMF) to link these health outcomes to specific PM sources, building on a prior source apportionment study utilizing the same dataset. Our findings highlight anthropogenic combustion, particularly from traffic and biomass burning, as the primary contributors to OP in these urban sites. Significant correlations were observed between both OPDTT and PM2.5 concentration exposure and ARI hospital visits, alongside a notable association with pneumonia cases and OPDTT levels. Furthermore, PMF analysis demonstrated a clear link between traffic-related pollution and increased hospital admissions for respiratory issues, affirming the health impact of these sources. These results underscore the potential of OPDTT as a valuable metric for assessing the health risks associated with acute PM exposure, showcasing its broader application in environmental health studies.


Assuntos
Poluentes Atmosféricos , Altitude , Cidades , Material Particulado , Material Particulado/análise , Bolívia/epidemiologia , Humanos , Poluentes Atmosféricos/análise , Adulto , Infecções Respiratórias/epidemiologia , Oxirredução , Masculino , Pessoa de Meia-Idade , Feminino , Pneumonia/epidemiologia , Pneumonia/induzido quimicamente , Adulto Jovem , Adolescente , Poluição do Ar/análise , Poluição do Ar/efeitos adversos , Criança , Monitoramento Ambiental/métodos , Pré-Escolar
2.
Proc Natl Acad Sci U S A ; 108(30): 12223-6, 2011 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-21746910

RESUMO

Volcanic eruptions caused major weather and climatic changes on timescales ranging from hours to centuries in the past. Volcanic particles are injected in the atmosphere both as primary particles rapidly deposited due to their large sizes on time scales of minutes to a few weeks in the troposphere, and secondary particles mainly derived from the oxidation of sulfur dioxide. These particles are responsible for the atmospheric cooling observed at both regional and global scales following large volcanic eruptions. However, large condensational sinks due to preexisting particles within the plume, and unknown nucleation mechanisms under these circumstances make the assumption of new secondary particle formation still uncertain because the phenomenon has never been observed in a volcanic plume. In this work, we report the first observation of nucleation and new secondary particle formation events in a volcanic plume. These measurements were performed at the puy de Dôme atmospheric research station in central France during the Eyjafjallajokull volcano eruption in Spring 2010. We show that the nucleation is indeed linked to exceptionally high concentrations of sulfuric acid and present an unusual high particle formation rate. In addition we demonstrate that the binary H(2)SO(4) - H(2)O nucleation scheme, as it is usually considered in modeling studies, underestimates by 7 to 8 orders of magnitude the observed particle formation rate and, therefore, should not be applied in tropospheric conditions. These results may help to revisit all past simulations of the impact of volcanic eruptions on climate.

3.
Natl Sci Rev ; 11(1): nwad138, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38116089

RESUMO

New particle formation (NPF) in the tropical free troposphere (FT) is a globally important source of cloud condensation nuclei, affecting cloud properties and climate. Oxidized organic molecules (OOMs) produced from biogenic volatile organic compounds are believed to contribute to aerosol formation in the tropical FT, but without direct chemical observations. We performed in situ molecular-level OOMs measurements at the Bolivian station Chacaltaya at 5240 m above sea level, on the western edge of Amazonia. For the first time, we demonstrate the presence of OOMs, mainly with 4-5 carbon atoms, in both gas-phase and particle-phase (in terms of mass contribution) measurements in tropical FT air from Amazonia. These observations, combined with air mass history analyses, indicate that the observed OOMs are linked to isoprene emitted from the rainforests hundreds of kilometers away. Based on particle-phase measurements, we find that these compounds can contribute to NPF, at least the growth of newly formed nanoparticles, in the tropical FT on a continental scale. Thus, our study is a fundamental and significant step in understanding the aerosol formation process in the tropical FT.

4.
Environ Int ; 185: 108553, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38460240

RESUMO

A reliable determination of equivalent black carbon (eBC) mass concentrations derived from filter absorption photometers (FAPs) measurements depends on the appropriate quantification of the mass absorption cross-section (MAC) for converting the absorption coefficient (babs) to eBC. This study investigates the spatial-temporal variability of the MAC obtained from simultaneous elemental carbon (EC) and babs measurements performed at 22 sites. We compared different methodologies for retrieving eBC integrating different options for calculating MAC including: locally derived, median value calculated from 22 sites, and site-specific rolling MAC. The eBC concentrations that underwent correction using these methods were identified as LeBC (local MAC), MeBC (median MAC), and ReBC (Rolling MAC) respectively. Pronounced differences (up to more than 50 %) were observed between eBC as directly provided by FAPs (NeBC; Nominal instrumental MAC) and ReBC due to the differences observed between the experimental and nominal MAC values. The median MAC was 7.8 ± 3.4 m2 g-1 from 12 aethalometers at 880 nm, and 10.6 ± 4.7 m2 g-1 from 10 MAAPs at 637 nm. The experimental MAC showed significant site and seasonal dependencies, with heterogeneous patterns between summer and winter in different regions. In addition, long-term trend analysis revealed statistically significant (s.s.) decreasing trends in EC. Interestingly, we showed that the corresponding corrected eBC trends are not independent of the way eBC is calculated due to the variability of MAC. NeBC and EC decreasing trends were consistent at sites with no significant trend in experimental MAC. Conversely, where MAC showed s.s. trend, the NeBC and EC trends were not consistent while ReBC concentration followed the same pattern as EC. These results underscore the importance of accounting for MAC variations when deriving eBC measurements from FAPs and emphasize the necessity of incorporating EC observations to constrain the uncertainty associated with eBC.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Aerossóis/análise , Estações do Ano , Fuligem/análise , Carbono/análise , Material Particulado/análise
5.
Environ Int ; 178: 108081, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37451041

RESUMO

This study analyzed the variability of equivalent black carbon (eBC) mass concentrations and their sources in urban Europe to provide insights into the use of eBC as an advanced air quality (AQ) parameter for AQ standards. This study compiled eBC mass concentration datasets covering the period between 2006 and 2022 from 50 measurement stations, including 23 urban background (UB), 18 traffic (TR), 7 suburban (SUB), and 2 regional background (RB) sites. The results highlighted the need for the harmonization of eBC measurements to allow for direct comparisons between eBC mass concentrations measured across urban Europe. The eBC mass concentrations exhibited a decreasing trend as follows: TR > UB > SUB > RB. Furthermore, a clear decreasing trend in eBC concentrations was observed in the UB sites moving from Southern to Northern Europe. The eBC mass concentrations exhibited significant spatiotemporal heterogeneity, including marked differences in eBC mass concentration and variable contributions of pollution sources to bulk eBC between different cities. Seasonal patterns in eBC concentrations were also evident, with higher winter concentrations observed in a large proportion of cities, especially at UB and SUB sites. The contribution of eBC from fossil fuel combustion, mostly traffic (eBCT) was higher than that of residential and commercial sources (eBCRC) in all European sites studied. Nevertheless, eBCRC still had a substantial contribution to total eBC mass concentrations at a majority of the sites. eBC trend analysis revealed decreasing trends for eBCT over the last decade, while eBCRC remained relatively constant or even increased slightly in some cities.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Aerossóis/análise , Poluição do Ar/análise , Europa (Continente) , Estações do Ano , Fuligem/análise , Carbono/análise , Material Particulado/análise
6.
Proc Natl Acad Sci U S A ; 105(41): 15666-71, 2008 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-18852453

RESUMO

Rising air pollution levels in South Asia will have worldwide environmental consequences. Transport of pollutants from the densely populated regions of India, Pakistan, China, and Nepal to the Himalayas may lead to substantial radiative forcing in South Asia with potential effects on the monsoon circulation and, hence, on regional climate and hydrological cycles, as well as to dramatic impacts on glacier retreat. An improved description of particulate sources is needed to constrain the simulation of future regional climate changes. Here, the first evidence of very frequent new particle formation events occurring up to high altitudes is presented. A 16-month record of aerosol size distribution from the Nepal Climate Observatory at Pyramid (Nepal, 5,079 m above sea level), the highest atmospheric research station, is shown. Aerosol concentrations are driven by intense ultrafine particle events occurring on >35% of the days at the interface between clean tropospheric air and the more polluted air rising from the valleys. During a pilot study, we observed a significant increase of ion cluster concentrations with the onset of new particle formation events. The ion clusters rapidly grew to a 10-nm size within a few hours, confirming, thus, that in situ nucleation takes place up to high altitudes. The initiation of the new particle events coincides with the shift from free tropospheric downslope winds to thermal upslope winds from the valley in the morning hours. The new particle formation events represent a very significant additional source of particles possibly injected into the free troposphere by thermal winds.


Assuntos
Poluentes Atmosféricos , Altitude , Íons , Nanopartículas , Aerossóis , Movimentos do Ar , Atmosfera , Nepal , Material Particulado
7.
Appl Environ Microbiol ; 76(1): 23-9, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19854931

RESUMO

The biodegradation of the most abundant atmospheric organic C1 to C4 compounds (formate, acetate, lactate, succinate) by five selected representative microbial strains (three Pseudomonas strains, one Sphingomonas strain, and one yeast strain) isolated from cloud water at the puy de Dôme has been studied. Experiments were first conducted under model conditions and consisted of a pure strain incubated in the presence of a single organic compound. Kinetics showed the ability of the isolates to degrade atmospheric compounds at temperatures representative of low-altitude clouds (5 degrees C and 17 degrees C). Then, to provide data that can be extrapolated to real situations, microcosm experiments were developed. A solution that chemically mimicked the composition of cloud water was used as an incubation medium for microbial strains. Under these conditions, we determined that microbial activity would significantly contribute to the degradation of formate, acetate, and succinate in cloud water at 5 degrees C and 17 degrees C, with lifetimes of 0.4 to 69.1 days. Compared with the reactivity involving free radicals, our results suggest that biological activity drives the oxidation of carbonaceous compounds during the night (90 to 99%), while its contribution accounts for 2 to 37% of the reactivity during the day, competing with photochemistry.


Assuntos
Microbiologia do Ar , Atmosfera/química , Carbono/metabolismo , Pseudomonas/metabolismo , Sphingomonas/metabolismo , Leveduras/metabolismo , Biodegradação Ambiental , Pseudomonas/isolamento & purificação , Sphingomonas/isolamento & purificação , Temperatura , Leveduras/isolamento & purificação
8.
Sci Rep ; 8(1): 5172, 2018 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-29581448

RESUMO

Black carbon (BC) and brown carbon (BrC) aerosols that are released from the combustion of fossil fuels and biomass are of great concern because of their light-absorbing ability and great abundance associated with various anthropogenic sources, particularly in East Asia. However, the optical properties of ambient aerosols are dependent on the mixing state and the chemical composition of absorbing and non-absorbing aerosols. Here we examined how, in East Asian outflows, the parameters of the aerosol optical properties can be altered seasonally in conjunction with the mixing state and the chemical composition of aerosols, using 3-year aerosol measurements. Our findings highlight the important role played by sulfate in East Asia during the warm season in both enhancing single scattering albedo (SSA) and altering the absorption properties of aerosols-enhancing mass absorption cross section of BC (MACBC) and reducing MAC of BrC (MACBrC,370). Therefore we suggest that in global radiative forcing models, particular attention should be paid to the consideration of the accurate treatment of the SO2 emission changes in the coming years in this region that will result from China's air quality policy.

9.
FEMS Microbiol Ecol ; 59(2): 242-54, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17328765

RESUMO

This work constitutes the first large report on aerobic cultivable microorganisms present in cloud water. Seven cloud-event samples were collected at the Puy de Dôme summit, and cultivation was performed leading to the isolation of 71 bacterial, 42 fungal and 15 yeast strains. Most of the fungi isolated were of Cladosporium or Trametes affiliation, and yeasts were of Cryptococcus affiliation. Bacteria, identified on the basis of their 16S rRNA gene sequence, were found to belong to Actinobacteria, Firmicutes, Proteobacteria (Alpha, Beta and Gamma subclasses) and Bacteroidetes phyla, and mainly to the genera Pseudomonas, Sphingomonas, Staphylococcus, Streptomyces, and Arthrobacter. These strains appear to be closely related to some bacteria described from cold environments, water (sea and freshwater), soil or vegetation. Comparison of the distribution of Gram-negative vs. Gram-positive bacteria shows that the number of Gram-negative bacteria is greater in summer than in winter. Finally, a very important result of this study concerns the ability of half of the tested strains to grow at low temperatures (5 degrees C): most of these are Gram-negative bacteria, and a few are even shown to be psychrophiles. On the whole, these results give a good picture of the microbial content of cloud water in terms of classification, and suggest that a large proportion of bacteria present in clouds have the capacity to be metabolically active there. This is of special interest with respect to the potential role of these microorganisms in atmospheric chemistry.


Assuntos
Microbiologia do Ar , Altitude , Temperatura Baixa , Água Doce/microbiologia , França , Fungos/classificação , Fungos/genética , Fungos/crescimento & desenvolvimento , Fungos/isolamento & purificação , Bactérias Gram-Negativas/classificação , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Negativas/isolamento & purificação , Bactérias Gram-Positivas/classificação , Bactérias Gram-Positivas/genética , Bactérias Gram-Positivas/crescimento & desenvolvimento , Bactérias Gram-Positivas/isolamento & purificação , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Estações do Ano , Análise de Sequência de DNA , Tempo (Meteorologia)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA