Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
PLoS Comput Biol ; 18(5): e1010080, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35617370

RESUMO

Finding the right amount of deliberation, between insufficient and excessive, is a hard decision making problem that depends on the value we place on our time. Average-reward, putatively encoded by tonic dopamine, serves in existing reinforcement learning theory as the opportunity cost of time, including deliberation time. Importantly, this cost can itself vary with the environmental context and is not trivial to estimate. Here, we propose how the opportunity cost of deliberation can be estimated adaptively on multiple timescales to account for non-stationary contextual factors. We use it in a simple decision-making heuristic based on average-reward reinforcement learning (AR-RL) that we call Performance-Gated Deliberation (PGD). We propose PGD as a strategy used by animals wherein deliberation cost is implemented directly as urgency, a previously characterized neural signal effectively controlling the speed of the decision-making process. We show PGD outperforms AR-RL solutions in explaining behaviour and urgency of non-human primates in a context-varying random walk prediction task and is consistent with relative performance and urgency in a context-varying random dot motion task. We make readily testable predictions for both neural activity and behaviour.


Assuntos
Tomada de Decisões , Recompensa , Animais , Dopamina , Reforço Psicológico , Fatores de Tempo
2.
Neural Comput ; 33(8): 2087-2127, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34310676

RESUMO

Many natural systems, especially biological ones, exhibit complex multivariate nonlinear dynamical behaviors that can be hard to capture by linear autoregressive models. On the other hand, generic nonlinear models such as deep recurrent neural networks often require large amounts of training data, not always available in domains such as brain imaging; also, they often lack interpretability. Domain knowledge about the types of dynamics typically observed in such systems, such as a certain type of dynamical systems models, could complement purely data-driven techniques by providing a good prior. In this work, we consider a class of ordinary differential equation (ODE) models known as van der Pol (VDP) oscil lators and evaluate their ability to capture a low-dimensional representation of neural activity measured by different brain imaging modalities, such as calcium imaging (CaI) and fMRI, in different living organisms: larval zebrafish, rat, and human. We develop a novel and efficient approach to the nontrivial problem of parameters estimation for a network of coupled dynamical systems from multivariate data and demonstrate that the resulting VDP models are both accurate and interpretable, as VDP's coupling matrix reveals anatomically meaningful excitatory and inhibitory interactions across different brain subsystems. VDP outperforms linear autoregressive models (VAR) in terms of both the data fit accuracy and the quality of insight provided by the coupling matrices and often tends to generalize better to unseen data when predicting future brain activity, being comparable to and sometimes better than the recurrent neural networks (LSTMs). Finally, we demonstrate that our (generative) VDP model can also serve as a data-augmentation tool leading to marked improvements in predictive accuracy of recurrent neural networks. Thus, our work contributes to both basic and applied dimensions of neuroimaging: gaining scientific insights and improving brain-based predictive models, an area of potentially high practical importance in clinical diagnosis and neurotechnology.


Assuntos
Encéfalo , Peixe-Zebra , Animais , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Redes Neurais de Computação , Dinâmica não Linear , Ratos
3.
PLoS Comput Biol ; 13(2): e1005343, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28151957

RESUMO

Experiments show that spike-triggered stimulation performed with Bidirectional Brain-Computer-Interfaces (BBCI) can artificially strengthen connections between separate neural sites in motor cortex (MC). When spikes from a neuron recorded at one MC site trigger stimuli at a second target site after a fixed delay, the connections between sites eventually strengthen. It was also found that effective spike-stimulus delays are consistent with experimentally derived spike-timing-dependent plasticity (STDP) rules, suggesting that STDP is key to drive these changes. However, the impact of STDP at the level of circuits, and the mechanisms governing its modification with neural implants remain poorly understood. The present work describes a recurrent neural network model with probabilistic spiking mechanisms and plastic synapses capable of capturing both neural and synaptic activity statistics relevant to BBCI conditioning protocols. Our model successfully reproduces key experimental results, both established and new, and offers mechanistic insights into spike-triggered conditioning. Using analytical calculations and numerical simulations, we derive optimal operational regimes for BBCIs, and formulate predictions concerning the efficacy of spike-triggered conditioning in different regimes of cortical activity.


Assuntos
Interfaces Cérebro-Computador , Retroalimentação Fisiológica/fisiologia , Modelos Neurológicos , Modelos Estatísticos , Córtex Motor/fisiologia , Plasticidade Neuronal/fisiologia , Simulação por Computador , Humanos , Neurorretroalimentação/fisiologia , Estatística como Assunto
4.
PLoS Comput Biol ; 12(12): e1005258, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27973557

RESUMO

Highly connected recurrent neural networks often produce chaotic dynamics, meaning their precise activity is sensitive to small perturbations. What are the consequences of chaos for how such networks encode streams of temporal stimuli? On the one hand, chaos is a strong source of randomness, suggesting that small changes in stimuli will be obscured by intrinsically generated variability. On the other hand, recent work shows that the type of chaos that occurs in spiking networks can have a surprisingly low-dimensional structure, suggesting that there may be room for fine stimulus features to be precisely resolved. Here we show that strongly chaotic networks produce patterned spikes that reliably encode time-dependent stimuli: using a decoder sensitive to spike times on timescales of 10's of ms, one can easily distinguish responses to very similar inputs. Moreover, recurrence serves to distribute signals throughout chaotic networks so that small groups of cells can encode substantial information about signals arriving elsewhere. A conclusion is that the presence of strong chaos in recurrent networks need not exclude precise encoding of temporal stimuli via spike patterns.


Assuntos
Potenciais de Ação/fisiologia , Modelos Neurológicos , Dinâmica não Linear , Biologia Computacional , Neurônios/fisiologia
5.
J Comput Neurosci ; 41(3): 305-322, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27585661

RESUMO

A large body of experimental and theoretical work on neural coding suggests that the information stored in brain circuits is represented by time-varying patterns of neural activity. Reservoir computing, where the activity of a recurrently connected pool of neurons is read by one or more units that provide an output response, successfully exploits this type of neural activity. However, the question of system robustness to small structural perturbations, such as failing neurons and synapses, has been largely overlooked. This contrasts with well-studied dynamical perturbations that lead to divergent network activity in the presence of chaos, as is the case for many reservoir networks. Here, we distinguish between two types of structural network perturbations, namely local (e.g., individual synaptic or neuronal failure) and global (e.g., network-wide fluctuations). Surprisingly, we show that while global perturbations have a limited impact on the ability of reservoir models to perform various tasks, local perturbations can produce drastic effects. To address this limitation, we introduce a new architecture where the reservoir is driven by a layer of oscillators that generate stable and repeatable trajectories. This model outperforms previous implementations while being resistant to relatively large local and global perturbations. This finding has implications for the design of reservoir models that capture the capacity of brain circuits to perform cognitively and behaviorally relevant tasks while remaining robust to various forms of perturbations. Further, our work proposes a novel role for neuronal oscillations found in cortical circuits, where they may serve as a collection of inputs from which a network can robustly generate complex dynamics and implement rich computations.


Assuntos
Encéfalo/citologia , Modelos Neurológicos , Redes Neurais de Computação , Neurônios/fisiologia , Dinâmica não Linear , Sinapses/fisiologia , Potenciais de Ação/fisiologia , Animais , Encéfalo/fisiologia , Simulação por Computador , Humanos
6.
Neural Comput ; 28(9): 1985-2010, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27391687

RESUMO

This work is part of an effort to understand the neural basis for our visual system's ability, or failure, to accurately track moving visual signals. We consider here a ring model of spiking neurons, intended as a simplified computational model of a single hypercolumn of the primary visual cortex of primates. Signals that consist of edges with time-varying orientations localized in space are considered. Our model is calibrated to produce spontaneous and driven firing rates roughly consistent with experiments, and our two main findings, for which we offer dynamical explanation on the level of neuronal interactions, are the following. First, we have documented consistent transient overshoots in signal perception following signal switches due to emergent interactions of the E- and I-populations. Second, for continuously moving signals, we have found that accuracy is considerably lower at reversals of orientation than when continuing in the same direction (as when the signal is a rotating bar). To measure performance, we use two metrics, called fidelity and reliability, to compare signals reconstructed by the system to the ones presented and assess trial-to-trial variability. We propose that the same population mechanisms responsible for orientation selectivity also impose constraints on dynamic signal tracking that manifest in perception failures consistent with psychophysical observations.

7.
bioRxiv ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38562772

RESUMO

Task errors are used to learn and refine motor skills. We investigated how task assistance influences learned neural representations using Brain-Computer Interfaces (BCIs), which map neural activity into movement via a decoder. We analyzed motor cortex activity as monkeys practiced BCI with a decoder that adapted to improve or maintain performance over days. Population dimensionality remained constant or increased with learning, counter to trends with non-adaptive BCIs. Yet, over time, task information was contained in a smaller subset of neurons or population modes. Moreover, task information was ultimately stored in neural modes that occupied a small fraction of the population variance. An artificial neural network model suggests the adaptive decoders contribute to forming these compact neural representations. Our findings show that assistive decoders manipulate error information used for long-term learning computations, like credit assignment, which informs our understanding of motor learning and has implications for designing real-world BCIs.

8.
J Neural Eng ; 21(1)2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38131193

RESUMO

Objective. Neurostimulation is emerging as treatment for several diseases of the brain and peripheral organs. Due to variability arising from placement of stimulation devices, underlying neuroanatomy and physiological responses to stimulation, it is essential that neurostimulation protocols are personalized to maximize efficacy and safety. Building such personalized protocols would benefit from accumulated information in increasingly large datasets of other individuals' responses.Approach. To address that need, we propose a meta-learning family of algorithms to conduct few-shot optimization of key fitting parameters of physiological and neural responses in new individuals. While our method is agnostic to neurostimulation setting, here we demonstrate its effectiveness on the problem of physiological modeling of fiber recruitment during vagus nerve stimulation (VNS). Using data from acute VNS experiments, the mapping between amplitudes of stimulus-evoked compound action potentials (eCAPs) and physiological responses, such as heart rate and breathing interval modulation, is inferred.Main results. Using additional synthetic data sets to complement experimental results, we demonstrate that our meta-learning framework is capable of directly modeling the physiology-eCAP relationship for individual subjects with much fewer individually queried data points than standard methods.Significance. Our meta-learning framework is general and can be adapted to many input-response neurostimulation mapping problems. Moreover, this method leverages information from growing data sets of past patients, as a treatment is deployed. It can also be combined with several model types, including regression, Gaussian processes with Bayesian optimization, and beyond.


Assuntos
Estimulação do Nervo Vago , Humanos , Estimulação do Nervo Vago/métodos , Teorema de Bayes , Nervo Vago/fisiologia , Potenciais de Ação , Potenciais Evocados
9.
ArXiv ; 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-37873007

RESUMO

In theoretical neuroscience, recent work leverages deep learning tools to explore how some network attributes critically influence its learning dynamics. Notably, initial weight distributions with small (resp. large) variance may yield a rich (resp. lazy) regime, where significant (resp. minor) changes to network states and representation are observed over the course of learning. However, in biology, neural circuit connectivity could exhibit a low-rank structure and therefore differs markedly from the random initializations generally used for these studies. As such, here we investigate how the structure of the initial weights -- in particular their effective rank -- influences the network learning regime. Through both empirical and theoretical analyses, we discover that high-rank initializations typically yield smaller network changes indicative of lazier learning, a finding we also confirm with experimentally-driven initial connectivity in recurrent neural networks. Conversely, low-rank initialization biases learning towards richer learning. Importantly, however, as an exception to this rule, we find lazier learning can still occur with a low-rank initialization that aligns with task and data statistics. Our research highlights the pivotal role of initial weight structures in shaping learning regimes, with implications for metabolic costs of plasticity and risks of catastrophic forgetting.

10.
Neurosci Conscious ; 2024(1): niae001, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487679

RESUMO

Conscious states-state that there is something it is like to be in-seem both rich or full of detail and ineffable or hard to fully describe or recall. The problem of ineffability, in particular, is a longstanding issue in philosophy that partly motivates the explanatory gap: the belief that consciousness cannot be reduced to underlying physical processes. Here, we provide an information theoretic dynamical systems perspective on the richness and ineffability of consciousness. In our framework, the richness of conscious experience corresponds to the amount of information in a conscious state and ineffability corresponds to the amount of information lost at different stages of processing. We describe how attractor dynamics in working memory would induce impoverished recollections of our original experiences, how the discrete symbolic nature of language is insufficient for describing the rich and high-dimensional structure of experiences, and how similarity in the cognitive function of two individuals relates to improved communicability of their experiences to each other. While our model may not settle all questions relating to the explanatory gap, it makes progress toward a fully physicalist explanation of the richness and ineffability of conscious experience-two important aspects that seem to be part of what makes qualitative character so puzzling.

11.
ArXiv ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39010870

RESUMO

Landmark universal function approximation results for neural networks with trained weights and biases provided impetus for the ubiquitous use of neural networks as learning models in Artificial Intelligence (AI) and neuroscience. Recent work has pushed the bounds of universal approximation by showing that arbitrary functions can similarly be learned by tuning smaller subsets of parameters, for example the output weights, within randomly initialized networks. Motivated by the fact that biases can be interpreted as biologically plausible mechanisms for adjusting unit outputs in neural networks, such as tonic inputs or activation thresholds, we investigate the expressivity of neural networks with random weights where only biases are optimized. We provide theoretical and numerical evidence demonstrating that feedforward neural networks with fixed random weights can be trained to perform multiple tasks by learning biases only. We further show that an equivalent result holds for recurrent neural networks predicting dynamical system trajectories. Our results are relevant to neuroscience, where they demonstrate the potential for behaviourally relevant changes in dynamics without modifying synaptic weights, as well as for AI, where they shed light on multi-task methods such as bias fine-tuning and unit masking.

12.
STAR Protoc ; 5(1): 102885, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38358881

RESUMO

Effective neural stimulation requires adequate parametrization. Gaussian-process (GP)-based Bayesian optimization (BO) offers a framework to discover optimal stimulation parameters in real time. Here, we first provide a general protocol to deploy this framework in neurostimulation interventions and follow by exemplifying its use in detail. Specifically, we describe the steps to implant rats with multi-channel electrode arrays in the hindlimb motor cortex. We then detail how to utilize the GP-BO algorithm to maximize evoked target movements, measured as electromyographic responses. For complete details on the use and execution of this protocol, please refer to Bonizzato and colleagues (2023).1.


Assuntos
Algoritmos , Animais , Ratos , Teorema de Bayes
13.
Nat Commun ; 15(1): 656, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38253577

RESUMO

The connection patterns of neural circuits form a complex network. How signaling in these circuits manifests as complex cognition and adaptive behaviour remains the central question in neuroscience. Concomitant advances in connectomics and artificial intelligence open fundamentally new opportunities to understand how connection patterns shape computational capacity in biological brain networks. Reservoir computing is a versatile paradigm that uses high-dimensional, nonlinear dynamical systems to perform computations and approximate cognitive functions. Here we present conn2res: an open-source Python toolbox for implementing biological neural networks as artificial neural networks. conn2res is modular, allowing arbitrary network architecture and dynamics to be imposed. The toolbox allows researchers to input connectomes reconstructed using multiple techniques, from tract tracing to noninvasive diffusion imaging, and to impose multiple dynamical systems, from spiking neurons to memristive dynamics. The versatility of the conn2res toolbox allows us to ask new questions at the confluence of neuroscience and artificial intelligence. By reconceptualizing function as computation, conn2res sets the stage for a more mechanistic understanding of structure-function relationships in brain networks.


Assuntos
Inteligência Artificial , Conectoma , Adaptação Psicológica , Encéfalo/diagnóstico por imagem , Cognição
14.
Bioelectron Med ; 10(1): 15, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38880906

RESUMO

BACKGROUND: Vagus nerve stimulation (VNS) is an established therapy for treating a variety of chronic diseases, such as epilepsy, depression, obesity, and for stroke rehabilitation. However, lack of precision and side-effects have hindered its efficacy and extension to new conditions. Achieving a better understanding of the relationship between VNS parameters and neural and physiological responses is therefore necessary to enable the design of personalized dosing procedures and improve precision and efficacy of VNS therapies. METHODS: We used biomarkers from recorded evoked fiber activity and short-term physiological responses (throat muscle, cardiac and respiratory activity) to understand the response to a wide range of VNS parameters in anaesthetised pigs. Using signal processing, Gaussian processes (GP) and parametric regression models we analyse the relationship between VNS parameters and neural and physiological responses. RESULTS: Firstly, we illustrate how considering multiple stimulation parameters in VNS dosing can improve the efficacy and precision of VNS therapies. Secondly, we describe the relationship between different VNS parameters and the evoked fiber activity and show how spatially selective electrodes can be used to improve fiber recruitment. Thirdly, we provide a detailed exploration of the relationship between the activations of neural fiber types and different physiological effects. Finally, based on these results, we discuss how recordings of evoked fiber activity can help design VNS dosing procedures that optimize short-term physiological effects safely and efficiently. CONCLUSION: Understanding of evoked fiber activity during VNS provide powerful biomarkers that could improve the precision, safety and efficacy of VNS therapies.

15.
J Neural Eng ; 21(2)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38479016

RESUMO

Objective.In bioelectronic medicine, neuromodulation therapies induce neural signals to the brain or organs, modifying their function. Stimulation devices capable of triggering exogenous neural signals using electrical waveforms require a complex and multi-dimensional parameter space to control such waveforms. Determining the best combination of parameters (waveform optimization or dosing) for treating a particular patient's illness is therefore challenging. Comprehensive parameter searching for an optimal stimulation effect is often infeasible in a clinical setting due to the size of the parameter space. Restricting this space, however, may lead to suboptimal therapeutic results, reduced responder rates, and adverse effects.Approach. As an alternative to a full parameter search, we present a flexible machine learning, data acquisition, and processing framework for optimizing neural stimulation parameters, requiring as few steps as possible using Bayesian optimization. This optimization builds a model of the neural and physiological responses to stimulations, enabling it to optimize stimulation parameters and provide estimates of the accuracy of the response model. The vagus nerve (VN) innervates, among other thoracic and visceral organs, the heart, thus controlling heart rate (HR), making it an ideal candidate for demonstrating the effectiveness of our approach.Main results.The efficacy of our optimization approach was first evaluated on simulated neural responses, then applied to VN stimulation intraoperatively in porcine subjects. Optimization converged quickly on parameters achieving target HRs and optimizing neural B-fiber activations despite high intersubject variability.Significance.An optimized stimulation waveform was achieved in real time with far fewer stimulations than required by alternative optimization strategies, thus minimizing exposure to side effects. Uncertainty estimates helped avoiding stimulations outside a safe range. Our approach shows that a complex set of neural stimulation parameters can be optimized in real-time for a patient to achieve a personalized precision dosing.


Assuntos
Estimulação do Nervo Vago , Humanos , Animais , Suínos , Estimulação do Nervo Vago/métodos , Teorema de Bayes , Nervo Vago/fisiologia , Coração , Fibras Nervosas Mielinizadas
16.
J Child Neurol ; 38(3-4): 223-238, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-37116888

RESUMO

Invasive brain-computer interfaces hold promise to alleviate disabilities in individuals with neurologic injury, with fully implantable brain-computer interface systems expected to reach the clinic in the upcoming decade. Children with severe neurologic disabilities, like quadriplegic cerebral palsy or cervical spine trauma, could benefit from this technology. However, they have been excluded from clinical trials of intracortical brain-computer interface to date. In this manuscript, we discuss the ethical considerations related to the use of invasive brain-computer interface in children with severe neurologic disabilities. We first review the technical hardware and software considerations for the application of intracortical brain-computer interface in children. We then discuss ethical issues related to motor brain-computer interface use in pediatric neurosurgery. Finally, based on the input of a multidisciplinary panel of experts in fields related to brain-computer interface (functional and restorative neurosurgery, pediatric neurosurgery, mathematics and artificial intelligence research, neuroengineering, pediatric ethics, and pragmatic ethics), we then formulate initial recommendations regarding the clinical use of invasive brain-computer interfaces in children.


Assuntos
Interfaces Cérebro-Computador , Pessoas com Deficiência , Neurocirurgia , Criança , Humanos , Inteligência Artificial , Procedimentos Neurocirúrgicos
17.
ArXiv ; 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37961743

RESUMO

Our ability to use deep learning approaches to decipher neural activity would likely benefit from greater scale, in terms of both model size and datasets. However, the integration of many neural recordings into one unified model is challenging, as each recording contains the activity of different neurons from different individual animals. In this paper, we introduce a training framework and architecture designed to model the population dynamics of neural activity across diverse, large-scale neural recordings. Our method first tokenizes individual spikes within the dataset to build an efficient representation of neural events that captures the fine temporal structure of neural activity. We then employ cross-attention and a PerceiverIO backbone to further construct a latent tokenization of neural population activities. Utilizing this architecture and training framework, we construct a large-scale multi-session model trained on large datasets from seven nonhuman primates, spanning over 158 different sessions of recording from over 27,373 neural units and over 100 hours of recordings. In a number of different tasks, we demonstrate that our pretrained model can be rapidly adapted to new, unseen sessions with unspecified neuron correspondence, enabling few-shot performance with minimal labels. This work presents a powerful new approach for building deep learning tools to analyze neural data and stakes out a clear path to training at scale.

18.
Nat Comput Sci ; 3(3): 240-253, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37693659

RESUMO

The complexity of the human brain gives the illusion that brain activity is intrinsically high-dimensional. Nonlinear dimensionality-reduction methods such as uniform manifold approximation and t-distributed stochastic neighbor embedding have been used for high-throughput biomedical data. However, they have not been used extensively for brain activity data such as those from functional magnetic resonance imaging (fMRI), primarily due to their inability to maintain dynamic structure. Here we introduce a nonlinear manifold learning method for time-series data-including those from fMRI-called temporal potential of heat-diffusion for affinity-based transition embedding (T-PHATE). In addition to recovering a low-dimensional intrinsic manifold geometry from time-series data, T-PHATE exploits the data's autocorrelative structure to faithfully denoise and unveil dynamic trajectories. We empirically validate T-PHATE on three fMRI datasets, showing that it greatly improves data visualization, classification, and segmentation of the data relative to several other state-of-the-art dimensionality-reduction benchmarks. These improvements suggest many potential applications of T-PHATE to other high-dimensional datasets of temporally diffuse processes.

19.
Cell Rep Med ; 4(4): 101008, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37044093

RESUMO

Neural stimulation can alleviate paralysis and sensory deficits. Novel high-density neural interfaces can enable refined and multipronged neurostimulation interventions. To achieve this, it is essential to develop algorithmic frameworks capable of handling optimization in large parameter spaces. Here, we leveraged an algorithmic class, Gaussian-process (GP)-based Bayesian optimization (BO), to solve this problem. We show that GP-BO efficiently explores the neurostimulation space, outperforming other search strategies after testing only a fraction of the possible combinations. Through a series of real-time multi-dimensional neurostimulation experiments, we demonstrate optimization across diverse biological targets (brain, spinal cord), animal models (rats, non-human primates), in healthy subjects, and in neuroprosthetic intervention after injury, for both immediate and continual learning over multiple sessions. GP-BO can embed and improve "prior" expert/clinical knowledge to dramatically enhance its performance. These results advocate for broader establishment of learning agents as structural elements of neuroprosthetic design, enabling personalization and maximization of therapeutic effectiveness.


Assuntos
Córtex Motor , Traumatismos da Medula Espinal , Ratos , Animais , Traumatismos da Medula Espinal/terapia , Haplorrinos , Teorema de Bayes
20.
Artigo em Inglês | MEDLINE | ID: mdl-36628172

RESUMO

In modern relational machine learning it is common to encounter large graphs that arise via interactions or similarities between observations in many domains. Further, in many cases the target entities for analysis are actually signals on such graphs. We propose to compare and organize such datasets of graph signals by using an earth mover's distance (EMD) with a geodesic cost over the underlying graph. Typically, EMD is computed by optimizing over the cost of transporting one probability distribution to another over an underlying metric space. However, this is inefficient when computing the EMD between many signals. Here, we propose an unbalanced graph EMD that efficiently embeds the unbalanced EMD on an underlying graph into an L 1 space, whose metric we call unbalanced diffusion earth mover's distance (UDEMD). Next, we show how this gives distances between graph signals that are robust to noise. Finally, we apply this to organizing patients based on clinical notes, embedding cells modeled as signals on a gene graph, and organizing genes modeled as signals over a large cell graph. In each case, we show that UDEMD-based embeddings find accurate distances that are highly efficient compared to other methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA