Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Chembiochem ; 25(5): e202300755, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38228506

RESUMO

Oligonucleotide therapeutics are becoming increasingly important as more are approved by the FDA, both for treatment and vaccination. Similarly, dynamic DNA nanotechnology is a promising technique that can be used to sense exogenous input molecules or endogenous biomarkers and integrate the results of multiple sensing reactions in situ via a programmed cascade of reactions. The combination of these two technologies could be highly impactful in biomedicine by enabling smart oligonucleotide therapeutics that can autonomously sense and respond to a disease state. A particular challenge, however, is the limited lifetime of standard nucleic acid components in living cells and organisms due to degradation by endogenous nucleases. In this work, we address this challenge by incorporating mirror-image, ʟ-DNA nucleotides to produce heterochiral "gapmers". We use dynamic DNA nanotechnology to show that these modifications keep the oligonucleotide intact in living human cells for longer than an unmodified strand. To this end, we used a sequential transfection protocol for delivering multiple nucleic acids into living human cells while providing enhanced confidence that subsequent interactions are actually occurring within the cells. Taken together, this work advances the state of the art of ʟ-nucleic acid protection of oligonucleotides and DNA circuitry for applications in vivo.


Assuntos
DNA , Ácidos Nucleicos , Humanos , Oligonucleotídeos , Endonucleases , Nanotecnologia
2.
PLoS Comput Biol ; 18(11): e1010676, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36399506

RESUMO

Adapting one's behavior to environmental conditions and past experience is a key trait of living systems. In the biological world, there is evidence for adaptive behaviors such as learning even in naturally occurring, non-neural, single-celled organisms. In the bioengineered world, advances in synthetic cell engineering and biorobotics have created the possibility of implementing lifelike systems engineered from the bottom up. This will require the development of programmable control circuitry for such biomimetic systems that is capable of realizing such non-trivial and adaptive behavior, including modification of subsequent behavior in response to environmental feedback. To this end, we report the design of novel stochastic chemical reaction networks capable of probabilistic decision-making in response to stimuli. We show that a simple chemical reaction network motif can be tuned to produce arbitrary decision probabilities when choosing between two or more responses to a stimulus signal. We further show that simple feedback mechanisms from the environment can modify these probabilities over time, enabling the system to adapt its behavior dynamically in response to positive or negative reinforcement based on its decisions. This system thus acts as a form of operant conditioning of the chemical circuit, in the sense that feedback provided based on decisions taken by the circuit form the basis of the learning process. Our work thus demonstrates that simple chemical systems can be used to implement lifelike behavior in engineered biomimetic systems.


Assuntos
Células Artificiais , Condicionamento Operante , Aprendizagem , Adaptação Psicológica , Biomimética
3.
Artif Life ; 29(3): 308-335, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37141578

RESUMO

The design and implementation of adaptive chemical reaction networks, capable of adjusting their behavior over time in response to experience, is a key goal for the fields of molecular computing and DNA nanotechnology. Mainstream machine learning research offers powerful tools for implementing learning behavior that could one day be realized in a wet chemistry system. Here we develop an abstract chemical reaction network model that implements the backpropagation learning algorithm for a feedforward neural network whose nodes employ the nonlinear "leaky rectified linear unit" transfer function. Our network directly implements the mathematics behind this well-studied learning algorithm, and we demonstrate its capabilities by training the system to learn a linearly inseparable decision surface, specifically, the XOR logic function. We show that this simulation quantitatively follows the definition of the underlying algorithm. To implement this system, we also report ProBioSim, a simulator that enables arbitrary training protocols for simulated chemical reaction networks to be straightforwardly defined using constructs from the host programming language. This work thus provides new insight into the capabilities of learning chemical reaction networks and also develops new computational tools to simulate their behavior, which could be applied in the design and implementations of adaptive artificial life.


Assuntos
Algoritmos , Redes Neurais de Computação , Simulação por Computador , Aprendizado de Máquina , DNA
4.
Theor Comput Sci ; 632: 21-42, 2016 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-27325906

RESUMO

Chemical reaction networks are a powerful means of specifying the intended behaviour of synthetic biochemical systems. A high-level formal specification, expressed as a chemical reaction network, may be compiled into a lower-level encoding, which can be directly implemented in wet chemistry and may itself be expressed as a chemical reaction network. Here we present conditions under which a lower-level encoding correctly emulates the sequential dynamics of a high-level chemical reaction network. We require that encodings are transactional, such that their execution is divided by a "commit reaction" that irreversibly separates the reactant-consuming phase of the encoding from the product-generating phase. We also impose restrictions on the sharing of species between reaction encodings, based on a notion of "extra tolerance", which defines species that may be shared between encodings without enabling unwanted reactions. Our notion of correctness is serializability of interleaved reaction encodings, and if all reaction encodings satisfy our correctness properties then we can infer that the global dynamics of the system are correct. This allows us to infer correctness of any system constructed using verified encodings. As an example, we show how this approach may be used to verify two- and four-domain DNA strand displacement encodings of chemical reaction networks, and we generalize our result to the limit where the populations of helper species are unlimited.

5.
Theor Comput Sci ; 632: 43-73, 2016 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-27293306

RESUMO

DNA nanotechnology is a promising approach for engineering computation at the nanoscale, with potential applications in biofabrication and intelligent nanomedicine. DNA strand displacement is a general strategy for implementing a broad range of nanoscale computations, including any computation that can be expressed as a chemical reaction network. Modelling and analysis of DNA strand displacement systems is an important part of the design process, prior to experimental realisation. As experimental techniques improve, it is important for modelling languages to keep pace with the complexity of structures that can be realised experimentally. In this paper we present a process calculus for modelling DNA strand displacement computations involving rich secondary structures, including DNA branches and loops. We prove that our calculus is also sufficiently expressive to model previous work on non-branching structures, and propose a mapping from our calculus to a canonical strand graph representation, in which vertices represent DNA strands, ordered sites represent domains, and edges between sites represent bonds between domains. We define interactions between strands by means of strand graph rewriting, and prove the correspondence between the process calculus and strand graph behaviours. Finally, we propose a mapping from strand graphs to an efficient implementation, which we use to perform modelling and simulation of DNA strand displacement systems with rich secondary structure.

6.
Chembiochem ; 16(5): 725-30, 2015 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-25663617

RESUMO

Pathogen detection is an important problem in many areas of medicine and agriculture, which can involve genomic or transcriptomic signatures or small-molecule metabolites. We report a unified, DNA-based sensor architecture capable of isothermal detection of double-stranded DNA targets, single-stranded oligonucleotides, and small molecules. Each sensor contains independent target detection and reporter modules, enabling rapid design. We detected gene variants on plasmids by using a straightforward isothermal denaturation protocol. The sensors were highly specific, even with a randomized DNA background. We achieved a limit of detection of ∼15 pM for single-stranded targets and ∼5 nM for targets on denatured plasmids. By incorporating a blocked aptamer sequence, we also detected small molecules using the same sensor architecture. This work provides a starting point for multiplexed detection of multi-strain pathogens, and disease states caused by genetic variants (e.g., sickle cell anemia).


Assuntos
Técnicas Biossensoriais , Sondas de DNA/análise , DNA/análise , Oligonucleotídeos/análise , Temperatura , DNA/genética , Sondas de DNA/genética , Proteínas de Fluorescência Verde/análise , Desnaturação de Ácido Nucleico , Oligonucleotídeos/genética
7.
Chembiochem ; 15(7): 950-4, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24692254

RESUMO

Chemical reactions catalyzed by DNAzymes offer a route to programmable modification of biomolecules for therapeutic purposes. To this end, we have developed a new type of catalytic DNA-based logic gates in which DNAzyme catalysis is controlled via toehold-mediated strand displacement reactions. We refer to these as DNAzyme displacement gates. The use of toeholds to guide input binding provides a favorable pathway for input recognition, and the innate catalytic activity of DNAzymes allows amplification of nanomolar input concentrations. We demonstrate detection of arbitrary input sequences by rational introduction of mismatched bases into inhibitor strands. Furthermore, we illustrate the applicability of DNAzyme displacement to compute logic functions involving multiple logic gates. This work will enable sophisticated logical control of a range of biochemical modifications, with applications in pathogen detection and autonomous theranostics.


Assuntos
Algoritmos , DNA Catalítico/metabolismo , DNA/metabolismo , Pareamento Incorreto de Bases , Catálise , DNA/química , DNA Catalítico/química , Hibridização de Ácido Nucleico , Oligonucleotídeos/química , Oligonucleotídeos/metabolismo
8.
Angew Chem Int Ed Engl ; 53(28): 7183-7, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24890874

RESUMO

Signal propagation through enzyme cascades is a critical component of information processing in cellular systems. Although such systems have potential as biomolecular computing tools, rational design of synthetic protein networks remains infeasible. DNA strands with catalytic activity (DNAzymes) are an attractive alternative, enabling rational cascade design through predictable base-pair hybridization principles. Multi-layered DNAzyme signaling and logic cascades are now reported. Signaling between DNAzymes was achieved using a structured chimeric substrate (SCS) that releases a downstream activator after cleavage by an upstream DNAzyme. The SCS can be activated by various upstream DNAzymes, can be coupled to DNA strand-displacement devices, and is highly resistant to interference from background DNA. This work enables the rational design of synthetic DNAzyme regulatory networks, with potential applications in biomolecular computing, biodetection, and autonomous theranostics.


Assuntos
DNA Catalítico/metabolismo , Transdução de Sinais , Técnicas Biossensoriais , DNA Catalítico/química , DNA Catalítico/genética , Modelos Moleculares , Hibridização de Ácido Nucleico , Especificidade por Substrato
9.
Sci Rep ; 14(1): 10157, 2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698072

RESUMO

Extraction of nucleic acids (NAs) is critical for many methods in molecular biology and bioanalytical chemistry. NA extraction has been extensively studied and optimized for a wide range of applications and its importance to society has significantly increased. The COVID-19 pandemic highlighted the importance of early and efficient NA testing, for which NA extraction is a critical analytical step prior to the detection by methods like polymerase chain reaction. This study explores simple, new approaches to extraction using engineered smart nanomaterials, namely NA-binding, intrinsically disordered proteins (IDPs), that undergo triggered liquid-liquid phase separation (LLPS). Two types of NA-binding IDPs are studied, both based on genetically engineered elastin-like polypeptides (ELPs), model IDPs that exhibit a lower critical solution temperature in water and can be designed to exhibit LLPS at desired temperatures in a variety of biological solutions. We show that ELP fusion proteins with natural NA-binding domains can be used to extract DNA and RNA from physiologically relevant solutions. We further show that LLPS of pH responsive ELPs that incorporate histidine in their sequences can be used for both binding, extraction and release of NAs from biological solutions, and can be used to detect SARS-CoV-2 RNA in samples from COVID-positive patients.


Assuntos
COVID-19 , Elastina , Peptídeos , SARS-CoV-2 , Elastina/química , Concentração de Íons de Hidrogênio , Peptídeos/química , COVID-19/virologia , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/genética , Humanos , Proteínas Intrinsicamente Desordenadas/química , Extração Líquido-Líquido/métodos , Ácidos Nucleicos/isolamento & purificação , Ácidos Nucleicos/química , DNA/química , DNA/isolamento & purificação , Polipeptídeos Semelhantes à Elastina , Separação de Fases
10.
J R Soc Interface ; 20(208): 20230259, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37963554

RESUMO

Cascades of DNA strand displacement reactions enable the design of potentially large circuits with complex behaviour. Computational modelling of such systems is desirable to enable rapid design and analysis. In previous work, the expressive power of graph theory was used to enumerate reactions implementing strand displacement across a wide range of complex structures. However, coping with the rich variety of possible graph-based structures required enumeration rules with complicated side-conditions. This paper presents an alternative approach to tackle the problem of enumerating reactions at domain level involving complex structures by integrating with a geometric constraint solving algorithm. The rule sets from previous work are simplified by replacing side-conditions with a general check on the geometric plausibility of structures generated by the enumeration algorithm. This produces a highly general geometric framework for reaction enumeration. Here, we instantiate this framework to solve geometric constraints by a structure sampling approach in which we randomly generate sets of coordinates and check whether they satisfy all the constraints. We demonstrate this system by applying it to examples from the literature where molecular geometry plays an important role, including DNA hairpin and remote toehold reactions. This work therefore enables integration of reaction enumeration and structural modelling.


Assuntos
Ácidos Nucleicos , DNA/química , Matemática , Algoritmos
11.
IEEE Trans Neural Netw Learn Syst ; 34(10): 7734-7745, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35133970

RESUMO

The development of programmable or trainable molecular circuits is an important goal in the field of molecular programming. Multilayer, nonlinear, artificial neural networks are a powerful framework for implementing such functionality in a molecular system, as they are provably universal function approximators. Here, we present a design for multilayer chemical neural networks with a nonlinear hyperbolic tangent transfer function. We use a weight perturbation algorithm to train the neural network which uses a simple construction to directly approximate the loss derivatives required for training. We demonstrate the training of this system to learn all 16 two-input binary functions from a common starting point. This work thus introduces new capabilities in the field of adaptive and trainable chemical reaction network (CRN) design. It also opens the door to potential future experimental implementations, including DNA strand displacement reactions.

12.
Bioinformatics ; 27(22): 3211-3, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21984756

RESUMO

SUMMARY: The Visual DSD (DNA Strand Displacement) tool allows rapid prototyping and analysis of computational devices implemented using DNA strand displacement, in a convenient web-based graphical interface. It is an implementation of the DSD programming language and compiler described by Lakin et al. (2011) with additional features such as support for polymers of unbounded length. It also supports stochastic and deterministic simulation, construction of continuous-time Markov chains and various export formats which allow models to be analysed using third-party tools.


Assuntos
Computadores Moleculares , DNA/química , Software , Gráficos por Computador , Hibridização de Ácido Nucleico , Linguagens de Programação
13.
ACS Synth Biol ; 11(7): 2222-2228, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35749687

RESUMO

Heterochiral DNA nanotechnology employs nucleic acids of both chiralities to construct nanoscale devices for applications in the intracellular environment. Interacting directly with cellular nucleic acids can be done most easily using D-DNA of the naturally occurring right-handed chirality; however, D-DNA is more vulnerable to degradation than enantiometric left-handed L-DNA. Here we report a novel combination of D-DNA and L-DNA nucleotides in triblock heterochiral copolymers, where the L-DNA domains act as protective caps on D-DNA domains. We demonstrate that the D-DNA components of strand displacement-based molecular circuits constructed using this technique resist exonuclease-mediated degradation during extended incubations in serum-supplemented media more readily than similar devices without the L-DNA caps. We show that this protection can be applied to both double-stranded and single-stranded circuit components. Our work enhances the state of the art for robust heterochiral circuit design and could lead to practical applications such as in vivo biomedical diagnostics.


Assuntos
Exonucleases , Nanoestruturas , DNA/química , Nanotecnologia/métodos
14.
R Soc Open Sci ; 8(12): 211310, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34950493

RESUMO

Finite-state automata (FSA) are simple computational devices that can nevertheless illustrate interesting behaviours. We propose that FSA can be employed as control circuits for engineered stochastic biological and biomolecular systems. We present an implementation of FSA using counts of chemical species in the range of hundreds to thousands, which is relevant for the counts of many key molecules such as mRNAs in prokaryotic cells. The challenge here is to ensure a robust representation of the current state in the face of stochastic noise. We achieve this by using a multistable approximate majority algorithm to stabilize and store the current state of the system. Arbitrary finite state machines can thus be compiled into robust stochastic chemical automata. We present two variants: one that consumes its input signals to initiate state transitions and one that does not. We characterize the state change dynamics of these systems and demonstrate their application to solve the four-bit binary square root problem. Our work lays the foundation for the use of chemical automata as control circuits in bioengineered systems and biorobotics.

15.
Sci Rep ; 11(1): 12730, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34135406

RESUMO

Molecular circuits implemented using molecular components tethered to a DNA tile nanostructure have certain advantages over solution-phase circuits. Tethering components in close proximity increases the speed of reactions by reducing diffusion and improves scalability by enabling reuse of identical DNA sequences at different locations in the circuit. These systems show great potential for practical applications including delivery of diagnostic and therapeutic molecular circuits to cells. When modeling such systems, molecular geometry plays an important role in determining whether the two species interact and at what rate. In this paper, we present an automated method for estimating reaction rates in tethered molecular circuits that takes the geometry of the tethered species into account. We probabilistically generate samples of structure distributions based on simple biophysical models and use these to estimate important parameters for kinetic models. This work provides a basis for subsequent enhanced modeling and design tools for localized molecular circuits.


Assuntos
Computadores Moleculares , DNA , DNA/química , Nanoestruturas
16.
Elife ; 102021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34927583

RESUMO

Employing concepts from physics, chemistry and bioengineering, 'learning-by-building' approaches are becoming increasingly popular in the life sciences, especially with researchers who are attempting to engineer cellular life from scratch. The SynCell2020/21 conference brought together researchers from different disciplines to highlight progress in this field, including areas where synthetic cells are having socioeconomic and technological impact. Conference participants also identified the challenges involved in designing, manipulating and creating synthetic cells with hierarchical organization and function. A key conclusion is the need to build an international and interdisciplinary research community through enhanced communication, resource-sharing, and educational initiatives.


Assuntos
Células Artificiais , Bioengenharia/métodos , Bioengenharia/estatística & dados numéricos , Bioengenharia/tendências , Colaboração Intersetorial , Organelas/fisiologia , Biologia Sintética/tendências , Previsões , Humanos
17.
ACS Synth Biol ; 9(7): 1499-1513, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32589838

RESUMO

The construction of models of system behavior is of great importance throughout science and engineering. In bioengineering and bionanotechnology, these often take the form of dynamic models that specify the evolution of different species over time. To ensure that scientific observations and conclusions are consistent and that systems can be reliably engineered on the basis of model predictions, it is important that models of biomolecular systems can be constructed in a reliable, principled, and efficient manner. This review focuses on efforts to address this need by using domain-specific programming languages as the basis for custom design tools for researchers working on computational nucleic acid devices, where a domain-specific language is simply a programming language tailored to a particular application domain. The underlying thesis of our review is that there is a continuum of practical implementation strategies for computational nucleic acid systems, which can all benefit from appropriate domain-specific languages and software design tools. We emphasize the need for specialized yet flexible tools that can be realized using domain-specific languages that compile to more general-purpose representations.


Assuntos
DNA/química , Linguagens de Programação , Algoritmos , DNA/metabolismo , Enzimas/metabolismo , Lógica , Nanotecnologia , Hibridização de Ácido Nucleico , Biologia Sintética
18.
ACS Synth Biol ; 9(7): 1907-1910, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32551499

RESUMO

Molecular computing offers a powerful framework for in situ biosensing and signal processing at the nanoscale. However, for in vivo applications, the use of conventional DNA components can lead to false positive signals being generated due to degradation of circuit components by nuclease enzymes. Here, we use hybrid chiral molecules, consisting of both l- and d-nucleic acid domains, to implement leakless signal translators that enable d-nucleic acid signals to be detected by hybridization and then translated into a robust l-DNA signal for further analysis. We show that our system is robust to false positive signals even if the d-DNA components are degraded by nucleases, thanks to circuit-level robustness. This work thus broadens the scope and applicability of DNA-based molecular computers for practical, in vivo applications.


Assuntos
Computadores Moleculares , DNA de Cadeia Simples/química , DNA de Cadeia Simples/genética , Animais , Sequência de Bases , Bovinos , Meios de Cultura/química , Fragmentação do DNA , Desoxirribonucleases/química , Conformação de Ácido Nucleico , Hibridização de Ácido Nucleico , Oligonucleotídeos/química , Biossíntese de Proteínas , Recombinação Genética , Soroalbumina Bovina
19.
ACS Synth Biol ; 8(7): 1530-1547, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-30372611

RESUMO

Computational nucleic acid devices show great potential for enabling a broad range of biotechnology applications, including smart probes for molecular biology research, in vitro assembly of complex compounds, high-precision in vitro disease diagnosis and, ultimately, computational theranostics inside living cells. This diversity of applications is supported by a range of implementation strategies, including nucleic acid strand displacement, localization to substrates, and the use of enzymes with polymerase, nickase, and exonuclease functionality. However, existing computational design tools are unable to account for these strategies in a unified manner. This paper presents a logic programming language that allows a broad range of computational nucleic acid systems to be designed and analyzed. The language extends standard logic programming with a novel equational theory to express nucleic acid molecular motifs. It automatically identifies matching motifs present in the full system, in order to apply a specified transformation expressed as a logical rule. The language supports the definition of logic predicates, which provide constraints that need to be satisfied in order for a given rule to be applied. The language is sufficiently expressive to encode the semantics of nucleic strand displacement systems with complex topologies, together with computation performed by a broad range of enzymes, and is readily extensible to new implementation strategies. Our approach lays the foundation for a unifying framework for the design of computational nucleic acid devices.


Assuntos
Biologia Computacional/métodos , Ácidos Nucleicos/genética , Biotecnologia/métodos , Computadores Moleculares , DNA/genética , Humanos , Lógica , Linguagens de Programação , Semântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA