Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Exp Eye Res ; 225: 109254, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36150544

RESUMO

Advanced age is the most established risk factor for developing age-related macular degeneration (AMD), one of the leading causes of visual impairment in the elderly, in Western and developed countries. Similarly, after middle age, there is an exponential increase in pathologic molecular and cellular events that can induce senescence, traditionally defined as an irreversible loss of the cells' ability to divide and most recently reported to also occur in select post-mitotic and terminally differentiated cells, such as neurons. Together these facts raise the question as to whether or not cellular senescence, may play a role in the development of AMD. A number of studies have reported the effect of ocular-relevant inducers of senescence using primarily in vitro models of poorly polarized, actively dividing retinal pigment epithelial (RPE) cell lines. However, in interpretating the data, the fidelity of these culture models to the RPE in vivo, must be considered. Fewer studies have explored the presence and/or impact of senescent cells in in vivo models that present with phenotypic features of AMD, leaving this an open field for further investigation. The goal of this review is to discuss current thoughts on the potential role of senescence in AMD development and progression, with consideration of the model systems used and their relevance to human disease.


Assuntos
Degeneração Macular , Epitélio Pigmentado da Retina , Pessoa de Meia-Idade , Humanos , Idoso , Epitélio Pigmentado da Retina/metabolismo , Degeneração Macular/metabolismo , Senescência Celular
2.
Exp Eye Res ; 222: 109170, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35835183

RESUMO

Age-related macular degeneration (AMD) is a disease that affects the macula - the central part of the retina. It is a leading cause of irreversible vision loss in the elderly. AMD onset is marked by the presence of lipid- and protein-rich extracellular deposits beneath the retinal pigment epithelium (RPE), a monolayer of polarized, pigmented epithelial cells located between the photoreceptors and the choroidal blood supply. Progression of AMD to the late nonexudative "dry" stage of AMD, also called geographic atrophy, is linked to progressive loss of areas of the RPE, photoreceptors, and underlying choriocapillaris leading to a severe decline in patients' vision. Differential susceptibility of macular RPE in AMD and the lack of an anatomical macula in most lab animal models has promoted the use of in vitro models of the RPE. In addition, the need for high throughput platforms to test potential therapies has driven the creation and characterization of in vitro model systems that recapitulate morphologic and functional abnormalities associated with human AMD. These models range from spontaneously formed cell line ARPE19, immortalized cell lines such as hTERT-RPE1, RPE-J, and D407, to primary human (fetal or adult) or animal (mouse and pig) RPE cells, and embryonic and induced pluripotent stem cell (iPSC) derived RPE. Hallmark RPE phenotypes, such as cobblestone morphology, pigmentation, and polarization, vary significantly betweendifferent models and culture conditions used in different labs, which would directly impact their usability for investigating different aspects of AMD biology. Here the AMD Disease Models task group of the Ryan Initiative for Macular Research (RIMR) provides a summary of several currently used in vitro RPE models, historical aspects of their development, RPE phenotypes that are attainable in these models, their ability to model different aspects of AMD pathophysiology, and pros/cons for their use in the RPE and AMD fields. In addition, due to the burgeoning use of iPSC derived RPE cells, the critical need for developing standards for differentiating and rigorously characterizing RPE cell appearance, morphology, and function are discussed.


Assuntos
Atrofia Geográfica , Células-Tronco Pluripotentes Induzidas , Degeneração Macular , Adulto , Idoso , Animais , Técnicas de Cultura de Células , Atrofia Geográfica/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Degeneração Macular/metabolismo , Camundongos , Epitélio Pigmentado da Retina/metabolismo , Suínos
3.
Proc Natl Acad Sci U S A ; 115(36): 9014-9019, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30126999

RESUMO

Abnormally enlarged early endosomes (EEs) are pathological features of neurodegenerative diseases, yet insight into the mechanisms and consequences of EE expansion remains elusive. Here, we report swollen apical EEs in the retinal pigment epithelium (RPE) of aged human donors and in the pigmented Abca4-/- mouse model of Stargardt early-onset macular degeneration. Using high-resolution live-cell imaging, we show that age-related and pathological accumulation of lipofuscin bisretinoids increases ceramide at the apical surface of the RPE, which promotes inward budding and homotypic fusion of EEs. These enlarged endosomes internalize the complement protein C3 into the RPE, resulting in the intracellular generation of C3a fragments. Increased C3a in turn activates the mechanistic target of rapamycin (mTOR), a regulator of critical metabolic processes such as autophagy. The antidepressant desipramine, which decreases ceramide levels by inhibiting acid sphingomyelinase, corrects EE defects in the RPE of Abca4-/- mice. This prevents C3 internalization and limits the formation of C3a fragments within the RPE. Although uncontrolled complement activation is associated with macular degenerations, how complement contributes to pathology in a progressive disease is not well understood. Our studies link expansion of the EE compartment with intracellular complement generation and aberrant mTOR activation, which could set the stage for chronic metabolic reprogramming in the RPE as a prelude to disease. The pivotal role of ceramide in driving EE biogenesis and fusion in the Abca4-/- mice RPE suggests that therapeutic targeting of ceramide could be effective in Stargardt disease and other macular degenerations.


Assuntos
Complemento C3a/metabolismo , Endossomos/metabolismo , Degeneração Macular/congênito , Epitélio Pigmentado da Retina/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Transportadores de Cassetes de Ligação de ATP/deficiência , Idoso , Idoso de 80 Anos ou mais , Animais , Ceramidas/genética , Ceramidas/metabolismo , Complemento C3a/genética , Modelos Animais de Doenças , Endossomos/genética , Endossomos/patologia , Feminino , Humanos , Degeneração Macular/genética , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Masculino , Camundongos , Camundongos Knockout , Epitélio Pigmentado da Retina/patologia , Doença de Stargardt , Suínos , Serina-Treonina Quinases TOR/genética
4.
Proc Natl Acad Sci U S A ; 113(31): 8789-94, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27432952

RESUMO

The retinal pigment epithelium (RPE) is a key site of injury in inherited and age-related macular degenerations. Abnormal activation of the complement system is a feature of these blinding diseases, yet how the RPE combats complement attack is poorly understood. The complement cascade terminates in the cell-surface assembly of membrane attack complexes (MACs), which promote inflammation by causing aberrant signal transduction. Here, we investigated mechanisms crucial for limiting MAC assembly and preserving cellular integrity in the RPE and asked how these are compromised in models of macular degeneration. Using polarized primary RPE and the pigmented Abca4(-/-) Stargardt disease mouse model, we provide evidence for two protective responses occurring within minutes of complement attack, which are essential for maintaining mitochondrial health in the RPE. First, accelerated recycling of the membrane-bound complement regulator CD59 to the RPE cell surface inhibits MAC formation. Second, fusion of lysosomes with the RPE plasma membrane immediately after complement attack limits sustained elevations in intracellular calcium and prevents mitochondrial injury. Cholesterol accumulation in the RPE, induced by vitamin A dimers or oxidized LDL, inhibits these defense mechanisms by activating acid sphingomyelinase (ASMase), which increases tubulin acetylation and derails organelle traffic. Defective CD59 recycling and lysosome exocytosis after complement attack lead to mitochondrial fragmentation and oxidative stress in the RPE. Drugs that stimulate cholesterol efflux or inhibit ASMase restore both these critical safeguards in the RPE and avert complement-induced mitochondrial injury in vitro and in Abca4(-/-) mice, indicating that they could be effective therapeutic approaches for macular degenerations.


Assuntos
Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Proteínas do Sistema Complemento/metabolismo , Degeneração Macular/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Antígenos CD59/metabolismo , Cálcio/metabolismo , Células Cultivadas , Colesterol/metabolismo , Humanos , Lisossomos/metabolismo , Degeneração Macular/congênito , Degeneração Macular/genética , Camundongos Knockout , Mitocôndrias/metabolismo , Estresse Oxidativo , Epitélio Pigmentado da Retina/citologia , Esfingomielina Fosfodiesterase/metabolismo , Doença de Stargardt , Suínos
5.
Adv Exp Med Biol ; 1074: 335-343, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29721961

RESUMO

Early endosomes are organelles that receive macromolecules and solutes from the extracellular environment. The major function of early endosomes is to sort these cargos into recycling and degradative compartments of the cell. Degradation of the cargo involves maturation of early endosomes into late endosomes, which, after acquisition of hydrolytic enzymes, form lysosomes. Endosome maturation involves recruitment of specific proteins and lipids to the early endosomal membrane, which drives changes in endosome morphology. Defects in early endosome maturation are generally accompanied by alterations in morphology, such as increase in volume and/or number. Enlarged early endosomes have been observed in Alzheimer's disease and Niemann Pick Disease type C, which also exhibit defects in endocytic sorting. This article discusses the mechanisms that regulate early endosome morphology and highlights the potential importance of endosome maturation in the retinal pigment epithelium.


Assuntos
Endossomos/ultraestrutura , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Modelos Animais de Doenças , Síndrome de Down/metabolismo , Síndrome de Down/patologia , Endocitose/fisiologia , Endossomos/fisiologia , Humanos , Degeneração Macular/congênito , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Fusão de Membrana , Lipídeos de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Modelos Biológicos , Doença de Niemann-Pick Tipo C/metabolismo , Doença de Niemann-Pick Tipo C/patologia , Biogênese de Organelas , Transporte Proteico/fisiologia , Doença de Stargardt , Proteínas rab de Ligação ao GTP/metabolismo
6.
Mol Vis ; 23: 60-89, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28356702

RESUMO

PURPOSE: The RPE cell line ARPE-19 provides a dependable and widely used alternative to native RPE. However, replication of the native RPE phenotype becomes more difficult because these cells lose their specialized phenotype after multiple passages. Compounding this problem is the widespread use of ARPE-19 cells in an undifferentiated state to attempt to model RPE functions. We wished to determine whether suitable culture conditions and differentiation could restore the RPE-appropriate expression of genes and proteins to ARPE-19, along with a functional and morphological phenotype resembling native RPE. We compared the transcriptome of ARPE-19 cells kept in long-term culture with those of primary and other human RPE cells to assess the former's inherent plasticity relative to the latter. METHODS: ARPE-19 cells at passages 9 to 12 grown in DMEM containing high glucose and pyruvate with 1% fetal bovine serum were differentiated for up to 4 months. Immunocytochemistry was performed on ARPE-19 cells grown on filters. Total RNA extracted from ARPE-19 cells cultured for either 4 days or 4 months was used for RNA sequencing (RNA-Seq) analysis using a 2 × 50 bp paired end protocol. The RNA-Seq data were analyzed to identify the affected pathways and recognize shared ontological classification among differentially expressed genes. RPE-specific mRNAs and miRNAs were assessed with quantitative real-time (RT)-PCR, and proteins with western blotting. RESULTS: ARPE-19 cells grown for 4 months developed the classic native RPE phenotype with heavy pigmentation. RPE-expressed genes, including RPE65, RDH5, and RDH10, as well as miR-204/211, were greatly increased in the ARPE-19 cells maintained at confluence for 4 months. The RNA-Seq analysis provided a comprehensive view of the relative abundance and differential expression of the genes in the differentiated ARPE-19 cells. Of the 16,757 genes with detectable signals, nearly 1,681 genes were upregulated, and 1,629 genes were downregulated with a fold change of 2.5 or more differences between 4 months and 4 days of culture. Gene Ontology analysis showed that the upregulated genes were associated with visual cycle, phagocytosis, pigment synthesis, cell differentiation, and RPE-related transcription factors. The majority of the downregulated genes play a role in cell cycle and proliferation. CONCLUSIONS: The ARPE-19 cells cultured for 4 months developed a phenotype characteristic of native RPE and expressed proteins, mRNAs, and miRNAs characteristic of the RPE. Comparison of the ARPE-19 RNA-Seq data set with that of primary human fetal RPE, embryonic stem cell-derived RPE, and native RPE revealed an important overall similar expression ratio among all the models and native tissue. However, none of the cultured models reached the absolute values in the native tissue. The results of this study demonstrate that low-passage ARPE-19 cells can express genes specific to native human RPE cells when appropriately cultured and differentiated.


Assuntos
Diferenciação Celular/genética , Perfilação da Expressão Gênica , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/metabolismo , Linhagem Celular , Regulação para Baixo/genética , Células Epiteliais/metabolismo , Ontologia Genética , Humanos , Melaninas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fagocitose/genética , Fenótipo , Retinoides/metabolismo , Regulação para Cima/genética
7.
Adv Exp Med Biol ; 854: 3-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26427386

RESUMO

The cholesterol transporting protein apolipoprotein E (ApoE) occurs in three allelic variants in humans unlike in other species. The resulting protein isoforms E2, E3 and E4 exhibit differences in lipid binding, integrating into lipoprotein particles and affinity for lipoprotein receptors. ApoE isoforms confer genetic risk for several diseases of aging including atherosclerosis, Alzheimer's disease, and age-related macular degeneration (AMD). A single E4 allele increases the risk of developing Alzheimer's disease, whereas the E2 allele is protective. Intriguingly, the E4 allele is protective in AMD. Current thinking about different functions of ApoE isoforms comes largely from studies on Alzheimer's disease. These data cannot be directly extrapolated to AMD since the primary cells affected in these diseases (neurons vs. retinal pigment epithelium) are so different. Here, we propose that ApoE serves a fundamentally different purpose in regulating cholesterol homeostasis in the retinal pigment epithelium and this could explain why allelic risk factors are flipped for AMD compared to Alzheimer's disease.


Assuntos
Apolipoproteína E2/metabolismo , Apolipoproteína E3/metabolismo , Apolipoproteína E4/metabolismo , Degeneração Macular/metabolismo , Alelos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Apolipoproteína E2/genética , Apolipoproteína E3/genética , Apolipoproteína E4/genética , Aterosclerose/genética , Aterosclerose/metabolismo , Colesterol/metabolismo , Humanos , Lipoproteínas/metabolismo , Degeneração Macular/genética , Neurônios/metabolismo , Ligação Proteica , Receptores de LDL/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Fatores de Risco
8.
J Cell Sci ; 125(Pt 24): 5937-43, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23038769

RESUMO

Fusion of lysosomes with the plasma membrane is a calcium-dependent process that is crucial for membrane repair, limiting pathogen entry and clearing cellular debris. In non-polarized cells, lysosome exocytosis facilitates rapid resealing of torn membranes. Here, we investigate the mechanism of lysosome exocytosis in polarized epithelia, the main barrier between the organism and the external environment and the first line of defense against pathogens. We find that in polarized Madin-Darby canine kidney (MDCK) cells, calcium ionophores or pore-forming toxins cause lysosomes to fuse predominantly with the basolateral membrane. This polarized exocytosis is regulated by the actin cytoskeleton, membrane cholesterol and the clathrin adaptor AP-1. Depolymerization of actin, but not microtubules, causes apical lysosome fusion, supporting the hypothesis that cortical actin is a barrier to exocytosis. Overloading lysosomes with cholesterol inhibits exocytosis, suggesting that excess cholesterol paralyzes lysosomal traffic. The clathrin adaptor AP-1 is responsible for accurately targeting syntaxin 4 to the basolateral domain. In cells lacking either the ubiquitous AP-1A or the epithelial-specific AP-1B, syntaxin 4 is non-polar. This causes lysosomes to fuse with both the apical and basolateral membranes. Consistent with these findings, RNAi-mediated depletion of syntaxin 4 inhibits basolateral exocytosis in wild-type MDCK, and both apical and basolateral exocytosis in cells lacking AP-1A or AP-1B. Our results provide fundamental insight into the molecular machinery involved in membrane repair in polarized epithelia and suggest that AP-1 is a crucial regulator of this process.


Assuntos
Células Epiteliais/metabolismo , Lisossomos/metabolismo , Actinas/metabolismo , Complexo 1 de Proteínas Adaptadoras/metabolismo , Animais , Cálcio/metabolismo , Colesterol/metabolismo , Cães , Exocitose/fisiologia , Células Madin Darby de Rim Canino
9.
Mol Vis ; 20: 285-300, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24644403

RESUMO

PURPOSE: Daily phagocytosis of outer segments (OSs) and retinoid recycling by the RPE lead to the accumulation of storage bodies in the RPE containing autofluorescent lipofuscin, which consists of lipids and bisretinoids such as A2E and its oxidation products. Accumulation of A2E and its oxidation products is implicated in the pathogenesis of several retinal degenerative diseases. However, A2E accumulates in the RPE during normal aging. In this study, we used a cell model to determine the homeostatic mechanisms of RPE cells in response to A2E accumulation. METHODS: To distinguish between pathologic and normal responses of the RPE to A2E accumulation, we treated established ARPE-19 cells (cultured for 3 weeks after reaching confluence) with low micromolar amounts of A2E for several weeks. We compared the lysosomal function, lysosomal pH, degree of OS digestion, and melanization of the treated cells to untreated control cells in response to a challenge of purified rod OSs (ROSs). A2E was analyzed with high-performance liquid chromatography (HPLC); and A2E and melanin were identified with mass spectrometry. RESULTS: We found that post-confluent ARPE-19 cells took up and accumulated A2E under dim light conditions. Spectral analysis of the HPLC separations and mass spectrometry showed that A2E-fed cells contained A2E and oxidized A2E (furan-A2E). A2E accumulation led to a modest increase (up to 0.25 unit) in lysosomal pH in these cells. The specific activity of cathepsin D and lysosomal acid phosphatase was reduced in the A2E-treated cells, but ROS degradation was not impaired. We found that, upon challenge with ROSs, melanin pigment was induced in the lysosomal fraction of the A2E-treated ARPE-19 cells. Thus, the ARPE-19 cells responded to the A2E treatment and ROS challenge by producing a melanin-containing lysosome fraction. We speculate that this prevents them from becoming impaired in OS processing. CONCLUSIONS: We used a modified ARPE-19 cell model in which melanization was elicited as a response to chronic accumulation of A2E. We found that although A2E treatment led, as has been previously reported, to modest lysosomal alkalinization and lysosomal impairment of ARPE-19 cells, a potential homeostatic mechanism may involve production of a special type of lysosomes containing melanin.


Assuntos
Células Epiteliais/metabolismo , Melaninas/metabolismo , Epitélio Pigmentado Ocular/citologia , Retinoides/farmacologia , Segmento Externo da Célula Bastonete/metabolismo , Álcalis/metabolismo , Aminas/metabolismo , Animais , Biocatálise/efeitos dos fármacos , Bovinos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Fluorescência , Humanos , Hidroquinonas/toxicidade , Lisossomos/efeitos dos fármacos , Lisossomos/enzimologia , Estresse Oxidativo/efeitos dos fármacos , Segmento Externo da Célula Bastonete/efeitos dos fármacos
10.
Adv Exp Med Biol ; 801: 267-74, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24664707

RESUMO

Assembly of sub-lytic C5b-9 membrane attack complexes (MAC) on the plasma membrane of retinal pigment epithelial cells contributes to the pathogenesis of age-related macular degeneration. C5b-9 pores induce calcium influx, which activates signaling pathways that compromise cell function. Mechanisms that limit sub-lytic MAC activity include: cell surface complement regulatory proteins CD46, CD55, and CD59 that inhibit specific steps of MAC formation; elimination of assembled MAC by exocytosis of membrane vesicles or by endocytosis and subsequent lysosomal degradation; and rapid resealing of pores by the exocytosis of lysosomes. Aging in the post-mitotic retinal pigment epithelium is characterized by the accumulation of cellular debris called lipofuscin, which has also been associated with retinal diseases such as age-related macular degeneration. Lipofuscin has been shown to activate complement components both in vitro and in vivo, suggesting that it could contribute complement-mediated dysfunction in the retinal pigment epithelium. Here, we discuss emerging evidence that vesicular trafficking in the retinal pigment epithelium is critical for efficient removal of MAC from the cell surface and for limiting inflammation in the outer retina.


Assuntos
Complexo de Ataque à Membrana do Sistema Complemento/imunologia , Proteínas do Sistema Complemento/imunologia , Exossomos/imunologia , Degeneração Macular/imunologia , Epitélio Pigmentado da Retina/imunologia , Exossomos/patologia , Humanos , Degeneração Macular/patologia
11.
bioRxiv ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38915631

RESUMO

During development, microglia prune excess synapses to refine neuronal circuits. In neurodegeneration, the role of microglia-mediated synaptic pruning in circuit remodeling and dysfunction is important for developing therapies aimed at modulating microglial function. Here we analyzed the role of microglia in the synapse disassembly of degenerating postsynaptic neurons in the inner retina. After inducing transient intraocular pressure elevation to injure retinal ganglion cells, microglia increase in number, shift to ameboid morphology, and exhibit greater process movement. Furthermore, due to the greater number of microglia, there is increased colocalization of microglia with synaptic components throughout the inner plexiform layer and with excitatory synaptic sites along individual ganglion cell dendrites. Microglia depletion partially restores ganglion cell function, suggesting that microglia activation may be neurotoxic in early neurodegeneration. Our results demonstrate the important role of microglia in synapse disassembly in degenerating circuits, highlighting their recruitment to synaptic sites early after neuronal injury. Highlights: Early after transient intraocular pressure elevation: Microglia increase in number, complexity, and process movementMicroglia-synaptic contacts increase in the inner plexiform layerMicroglia-synaptic contacts increase on retinal ganglion cell dendritesMicroglia depletion partially restores ganglion cell function.

12.
bioRxiv ; 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38854134

RESUMO

Mutations in progranulin ( GRN ) cause frontotemporal dementia ( GRN -FTD) due to deficiency of the pleiotropic protein progranulin. GRN -FTD exhibits diverse pathologies including lysosome dysfunction, lipofuscinosis, microgliosis, and neuroinflammation. Yet, how progranulin loss causes disease remains unresolved. Here, we report that non-invasive retinal imaging of GRN -FTD patients revealed deficits in photoreceptors and the retinal pigment epithelium (RPE) that correlate with cognitive decline. Likewise, Grn -/- mice exhibit early RPE dysfunction, microglial activation, and subsequent photoreceptor loss. Super-resolution live imaging and transcriptomic analyses identified RPE mitochondria as an early driver of retinal dysfunction. Loss of mitochondrial fission protein 1 (MTFP1) in Grn -/- RPE causes mitochondrial hyperfusion and bioenergetic defects, leading to NF-kB-mediated activation of complement C3a-C3a receptor signaling, which drives further mitochondrial hyperfusion and retinal inflammation. C3aR antagonism restores RPE mitochondrial integrity and limits subretinal microglial activation. Our study identifies a previously unrecognized mechanism by which progranulin modulates mitochondrial integrity and complement-mediated neuroinflammation.

13.
Curr Biol ; 33(18): 3805-3820.e7, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37586372

RESUMO

Balancing the competing demands of phagolysosomal degradation and autophagy is a significant challenge for phagocytic tissues. Yet how this plasticity is accomplished in health and disease is poorly understood. In the retina, circadian phagocytosis and degradation of photoreceptor outer segments by the postmitotic retinal pigment epithelium (RPE) are essential for healthy vision. Disrupted autophagy due to mechanistic target of rapamycin (mTOR) overactivation in the RPE is associated with blinding macular degenerations; however, outer segment degradation is unaffected in these diseases, indicating that distinct mechanisms regulate these clearance mechanisms. Here, using advanced imaging and mouse models, we identify optineurin as a key regulator that tunes phagocytosis and lysosomal capacity to meet circadian demands and helps prioritize outer segment clearance by the RPE in macular degenerations. High-resolution live-cell imaging implicates optineurin in scissioning outer segment tips prior to engulfment, analogous to microglial trogocytosis of neuronal processes. Optineurin is essential for recruiting light chain 3 (LC3), which anchors outer segment phagosomes to microtubules and facilitates phagosome maturation and fusion with lysosomes. This dynamically activates transcription factor EB (TFEB) to induce lysosome biogenesis in an mTOR-independent, transient receptor potential-mucolipin 1 (TRPML1)-dependent manner. RNA-seq analyses show that expression of TFEB target genes temporally tracks with optineurin recruitment and that lysosomal and autophagy genes are controlled by distinct transcriptional programs in the RPE. The unconventional plasma membrane-to-nucleus signaling mediated by optineurin ensures outer segment degradation under conditions of impaired autophagy in macular degeneration models. Independent regulation of these critical clearance mechanisms would help safeguard the metabolic fitness of the RPE throughout the organismal lifespan.


Assuntos
Lisossomos , Degeneração Macular , Camundongos , Animais , Lisossomos/metabolismo , Fagocitose , Epitélio Pigmentado da Retina/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Degeneração Macular/metabolismo
14.
Curr Opin Cell Biol ; 17(4): 423-34, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15975780

RESUMO

The cell biologist's insight into endosomal diversity, in terms of both form and function, has increased dramatically in the past few years. This understanding has been promoted by the availability of powerful new techniques that allow imaging of both cargo and machinery in the endocytic process in real time, and by our ability to inhibit components of this machinery by RNA interference. The emerging picture from these studies is of a highly complex, dynamic and adaptable endosomal system that interacts at various points with the secretory system of the cell.


Assuntos
Endossomos/classificação , Endossomos/metabolismo , Animais , Citoesqueleto/metabolismo , Lipídeos de Membrana/metabolismo , Transporte Proteico
15.
Front Cell Dev Biol ; 10: 1044672, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36393836

RESUMO

Mitochondrial dysfunction is strongly implicated in neurodegenerative diseases including age-related macular degeneration (AMD), which causes irreversible blindness in over 50 million older adults worldwide. A key site of insult in AMD is the retinal pigment epithelium (RPE), a monolayer of postmitotic polarized cells that performs essential functions for photoreceptor health and vision. Recent studies from our group and others have identified several features of mitochondrial dysfunction in AMD including mitochondrial fragmentation and bioenergetic defects. While these studies provide valuable insight at fixed points in time, high-resolution, high-speed live imaging is essential for following mitochondrial injury in real time and identifying disease mechanisms. Here, we demonstrate the advantages of live imaging to investigate RPE mitochondrial dynamics in cell-based and mouse models. We show that mitochondria in the RPE form extensive networks that are destroyed by fixation and discuss important live imaging considerations that can interfere with accurate evaluation of mitochondrial integrity such as RPE differentiation status and acquisition parameters. Our data demonstrate that RPE mitochondria show localized heterogeneities in membrane potential and ATP production that could reflect focal changes in metabolism and oxidative stress. Contacts between the mitochondria and organelles such as the ER and lysosomes mediate calcium flux and mitochondrial fission. Live imaging of mouse RPE flatmounts revealed a striking loss of mitochondrial integrity in albino mouse RPE compared to pigmented mice that could have significant functional consequences for cellular metabolism. Our studies lay a framework to guide experimental design and selection of model systems for evaluating mitochondrial health and function in the RPE.

16.
Proc Natl Acad Sci U S A ; 105(24): 8416-21, 2008 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-18541909

RESUMO

The intercellular spaces between neurons and glia contain an amorphous, negatively charged extracellular matrix (ECM) with the potential to shape and regulate the distribution of many diffusing ions, proteins and drugs. However, little evidence exists for direct regulation of extracellular diffusion by the ECM in living tissue. Here, we demonstrate macromolecule sequestration by an ECM component in vivo, using quantitative diffusion measurements from integrative optical imaging. Diffusion measurements in free solution, supported by confocal imaging and binding assays with cultured cells, were used to characterize the properties of a fluorescently labeled protein, lactoferrin (Lf), and its association with heparin and heparan sulfate in vitro. In vivo diffusion measurements were then performed through an open cranial window over rat somatosensory cortex to measure effective diffusion coefficients (D*) under different conditions, revealing that D* for Lf was reduced approximately 60% by binding to heparan sulfate proteoglycans, a prominent component of the ECM and cell surfaces in brain. Finally, we describe a method for quantifying heparan sulfate binding site density from data for Lf and the structurally similar protein transferrin, allowing us to predict a low micromolar concentration of these binding sites in neocortex, the first estimate in living tissue. Our results have significance for many tissues, because heparan sulfate is synthesized by almost every type of cell in the body. Quantifying ECM effects on diffusion will also aid in the modeling and design of drug delivery strategies for growth factors and viral vectors, some of which are likely to interact with heparan sulfate.


Assuntos
Matriz Extracelular/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Lactoferrina/metabolismo , Córtex Somatossensorial/metabolismo , Animais , Sítios de Ligação , Células Cultivadas , Fluoresceínas/química , Fluoresceínas/metabolismo , Humanos , Lactoferrina/química , Ratos , Ratos Sprague-Dawley , Córtex Somatossensorial/ultraestrutura , Transferrina/química , Transferrina/metabolismo
17.
Commun Biol ; 4(1): 454, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33846551

RESUMO

Nε-lysine acetylation in the ER lumen is a recently discovered quality control mechanism that ensures proteostasis within the secretory pathway. The acetyltransferase reaction is carried out by two type-II membrane proteins, ATase1/NAT8B and ATase2/NAT8. Prior studies have shown that reducing ER acetylation can induce reticulophagy, increase ER turnover, and alleviate proteotoxic states. Here, we report the generation of Atase1-/- and Atase2-/- mice and show that these two ER-based acetyltransferases play different roles in the regulation of reticulophagy and macroautophagy. Importantly, knockout of Atase1 alone results in activation of reticulophagy and rescue of the proteotoxic state associated with Alzheimer's disease. Furthermore, loss of Atase1 or Atase2 results in widespread adaptive changes in the cell acetylome and acetyl-CoA metabolism. Overall, our study supports a divergent role of Atase1 and Atase2 in cellular biology, emphasizing ATase1 as a valid translational target for diseases characterized by toxic protein aggregation in the secretory pathway.


Assuntos
Acetilcoenzima A/metabolismo , Acetiltransferases/genética , Autofagia/genética , Retículo Endoplasmático/fisiologia , Acetiltransferases/metabolismo , Animais , Feminino , Macroautofagia/genética , Masculino , Camundongos , Camundongos Knockout
18.
JCI Insight ; 6(9)2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33822768

RESUMO

Age-related macular degeneration (AMD) damages the retinal pigment epithelium (RPE), the tissue that safeguards photoreceptor health, leading to irreversible vision loss. Polymorphisms in cholesterol and complement genes are implicated in AMD, yet mechanisms linking risk variants to RPE injury remain unclear. We sought to determine how allelic variants in the apolipoprotein E cholesterol transporter modulate RPE homeostasis and function. Using live-cell imaging, we show that inefficient cholesterol transport by the AMD risk-associated ApoE2 increases RPE ceramide, leading to autophagic defects and complement-mediated mitochondrial damage. Mitochondrial injury drives redox state-sensitive cysteine-mediated phase separation of ApoE2, forming biomolecular condensates that could nucleate drusen. The protective ApoE4 isoform lacks these cysteines and is resistant to phase separation and condensate formation. In Abca-/- Stargardt macular degeneration mice, mitochondrial dysfunction induces liquid-liquid phase separation of p62/SQSTM1, a multifunctional protein that regulates autophagy. Drugs that decrease RPE cholesterol or ceramide prevent mitochondrial injury and phase separation in vitro and in vivo. In AMD donor RPE, mitochondrial fragmentation correlates with ApoE and p62 condensates. Our studies demonstrate that major AMD genetic and biological risk pathways converge upon RPE mitochondria, and identify mitochondrial stress-mediated protein phase separation as an important pathogenic mechanism and promising therapeutic target in AMD.


Assuntos
Condensados Biomoleculares/metabolismo , Ceramidas/metabolismo , Colesterol/metabolismo , Degeneração Macular/metabolismo , Mitocôndrias/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Proteína Sequestossoma-1/metabolismo , Animais , Apolipoproteína E2/genética , Apolipoproteína E4/genética , Autofagia/fisiologia , Condensados Biomoleculares/patologia , Proteínas do Sistema Complemento/metabolismo , Microscopia Intravital , Degeneração Macular/genética , Degeneração Macular/patologia , Camundongos , Camundongos Knockout , Mitocôndrias/patologia , Estresse Oxidativo , Epitélio Pigmentado da Retina/patologia
19.
Proc Natl Acad Sci U S A ; 104(26): 11026-31, 2007 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-17578916

RESUMO

Proteins involved in cholesterol trafficking are known to contribute to the pathogenesis of atherosclerosis and Alzheimer's disease. Allelic variants in the cholesterol transporters apolipoprotein E and ATP-binding cassette protein A1 (ABCA1) have recently been associated with susceptibility to age-related macular degeneration (AMD). Histopathological analyses of eyes with AMD demonstrate the presence of cholesterol and cholesteryl ester deposits beneath the retinal pigment epithelium (RPE), implicating abnormal cholesterol trafficking in disease progression. Here, we show that A2E, a quaternary amine and retinoid by-product of the visual cycle, causes the accumulation of free and esterified cholesterol in RPE cells. The mechanism involves neither generalized alterations in late endosomal/lysosomal pH nor a direct inhibition of acid lipase activity. Rather, A2E prevents cholesterol efflux from these organelles, which in turn indirectly inhibits acid lipase, leading to a subsequent accumulation of cholesteryl esters. Transcriptional activation of the ABCA1 cholesterol transporter by agonists of the liver X receptor/peroxisome proliferator-activated receptor pathway relieves the A2E-induced block on cholesterol efflux and restores cholesterol homeostasis in RPE cells. Our data also demonstrate that A2E, which is a cone-shaped lipid, increases the chemical activity and displacement of cholesterol from model membranes, providing a biophysical mechanism for cholesterol sequestration in A2E-loaded cells. Although endogenously produced A2E in the RPE has been associated with macular degeneration, the precise mechanisms are unclear. Our results provide direct evidence that A2E causes aberrant cholesterol metabolism in RPE cells which could likely contribute to AMD progression.


Assuntos
Colesterol/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipofuscina/farmacologia , Epitélio Pigmentado Ocular/efeitos dos fármacos , Compostos de Piridínio/farmacologia , Retinoides/farmacologia , Transportador 1 de Cassete de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Linhagem Celular , Ésteres do Colesterol/metabolismo , Humanos , Lipase/antagonistas & inibidores , Degeneração Macular/etiologia , Epitélio Pigmentado Ocular/metabolismo , Retina/patologia
20.
Redox Biol ; 37: 101781, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33162377

RESUMO

The retinal pigment epithelium (RPE) is the primary site of injury in non-neovascular age-related macular degeneration or dry AMD. Polymorphisms in genes that regulate complement activation and cholesterol metabolism are strongly associated with AMD, but the biology underlying disease-associated variants is not well understood. Here, we highlight recent studies that have used molecular, biochemical, and live-cell imaging methods to elucidate mechanisms by which aging-associated insults conspire with AMD genetic risk variants to tip the balance towards disease. We discuss how critical functions including lipid metabolism, autophagy, complement regulation, and mitochondrial dynamics are compromised in the RPE, and how a deeper understanding of these mechanisms has helped identify promising therapeutic targets to preserve RPE homeostasis in AMD.


Assuntos
Metabolismo dos Lipídeos , Degeneração Macular , Ativação do Complemento/genética , Humanos , Metabolismo dos Lipídeos/genética , Degeneração Macular/genética , Degeneração Macular/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Epitélio Pigmentado da Retina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA