Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
PLoS Genet ; 8(5): e1002697, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22654668

RESUMO

Spermatogenesis is a complex process reliant upon interactions between germ cells (GC) and supporting somatic cells. Testicular Sertoli cells (SC) support GCs during maturation through physical attachment, the provision of nutrients, and protection from immunological attack. This role is facilitated by an active cytoskeleton of parallel microtubule arrays that permit transport of nutrients to GCs, as well as translocation of spermatids through the seminiferous epithelium during maturation. It is well established that chemical perturbation of SC microtubule remodelling leads to premature GC exfoliation demonstrating that microtubule remodelling is an essential component of male fertility, yet the genes responsible for this process remain unknown. Using a random ENU mutagenesis approach, we have identified a novel mouse line displaying male-specific infertility, due to a point mutation in the highly conserved ATPase domain of the novel KATANIN p60-related microtubule severing protein Katanin p60 subunit A-like1 (KATNAL1). We demonstrate that Katnal1 is expressed in testicular Sertoli cells (SC) from 15.5 days post-coitum (dpc) and that, consistent with chemical disruption models, loss of function of KATNAL1 leads to male-specific infertility through disruption of SC microtubule dynamics and premature exfoliation of spermatids from the seminiferous epithelium. The identification of KATNAL1 as an essential regulator of male fertility provides a significant novel entry point into advancing our understanding of how SC microtubule dynamics promotes male fertility. Such information will have resonance both for future treatment of male fertility and the development of non-hormonal male contraceptives.


Assuntos
Adenosina Trifosfatases/genética , Infertilidade Masculina/genética , Células de Sertoli , Espermatogênese/genética , Adenosina Trifosfatases/metabolismo , Animais , Linhagem Celular Tumoral , Mapeamento Cromossômico , Expressão Gênica , Células Germinativas/citologia , Células Germinativas/metabolismo , Humanos , Katanina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Microtúbulos/genética , Microtúbulos/metabolismo , Mutagênese , Fenótipo , Polimorfismo de Nucleotídeo Único , Epitélio Seminífero/metabolismo , Epitélio Seminífero/patologia , Células de Sertoli/citologia , Células de Sertoli/metabolismo , Espermátides/metabolismo , Espermátides/patologia
2.
Nat Genet ; 38(3): 350-5, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16462745

RESUMO

Genomic imprinting results in allele-specific silencing according to parental origin. Silencing is brought about by imprinting control regions (ICRs) that are differentially marked in gametogenesis. The group of imprinted transcripts in the mouse Gnas cluster (Nesp, Nespas, Gnasxl, Exon 1A and Gnas) provides a model for analyzing the mechanisms of imprint regulation. We previously identified an ICR that specifically regulates the tissue-specific imprinted expression of the Gnas gene. Here we identify a second ICR at the Gnas cluster. We show that a paternally derived targeted deletion of the germline differentially methylated region (DMR) associated with the antisense Nespas transcript unexpectedly affects both the expression of all transcripts in the cluster and methylation of two DMRs. Our results establish that the Nespas DMR is the principal ICR at the Gnas cluster and functions bidirectionally as a switch for modulating expression of the antagonistically acting genes Gnasxl and Gnas. Uniquely, the Nespas DMR acts on the downstream ICR at exon 1A to regulate tissue-specific imprinting of the Gnas gene.


Assuntos
Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Impressão Genômica , RNA Antissenso/genética , RNA não Traduzido/genética , Transcrição Gênica , Animais , Cromograninas , Metilação de DNA , Éxons , Feminino , Masculino , Camundongos , Dados de Sequência Molecular , Família Multigênica , Deleção de Sequência
3.
BMC Dev Biol ; 10: 87, 2010 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-20704721

RESUMO

BACKGROUND: The planar cell polarity (PCP) signalling pathway is fundamental to a number of key developmental events, including initiation of neural tube closure. Disruption of the PCP pathway causes the severe neural tube defect of craniorachischisis, in which almost the entire brain and spinal cord fails to close. Identification of mouse mutants with craniorachischisis has proven a powerful way of identifying molecules that are components or regulators of the PCP pathway. In addition, identification of an allelic series of mutants, including hypomorphs and neomorphs in addition to complete nulls, can provide novel genetic tools to help elucidate the function of the PCP proteins. RESULTS: We report the identification of a new N-ethyl-N-nitrosourea (ENU)-induced mutant with craniorachischisis, which we have named chuzhoi (chz). We demonstrate that chuzhoi mutant embryos fail to undergo initiation of neural tube closure, and have characteristics consistent with defective convergent extension. These characteristics include a broadened midline and reduced rate of increase of their length-to-width ratio. In addition, we demonstrate disruption in the orientation of outer hair cells in the inner ear, and defects in heart and lung development in chuzhoi mutants. We demonstrate a genetic interaction between chuzhoi mutants and both Vangl2Lp and Celsr1Crsh mutants, strengthening the hypothesis that chuzhoi is involved in regulating the PCP pathway. We demonstrate that chuzhoi maps to Chromosome 17 and carries a splice site mutation in Ptk7. This mutation results in the insertion of three amino acids into the Ptk7 protein and causes disruption of Ptk7 protein expression in chuzhoi mutants. CONCLUSIONS: The chuzhoi mutant provides an additional genetic resource to help investigate the developmental basis of several congenital abnormalities including neural tube, heart and lung defects and their relationship to disruption of PCP. The chuzhoi mutation differentially affects the expression levels of the two Ptk7 protein isoforms and, while some Ptk7 protein can still be detected at the membrane, chuzhoi mutants demonstrate a significant reduction in membrane localization of Ptk7 protein. This mutant provides a useful tool to allow future studies aimed at understanding the molecular function of Ptk7.


Assuntos
Orelha Interna/anormalidades , Cardiopatias Congênitas/patologia , Pulmão/anormalidades , Mutagênese Insercional , Defeitos do Tubo Neural/patologia , Receptores Proteína Tirosina Quinases/genética , Animais , Polaridade Celular , Modelos Animais de Doenças , Orelha Interna/embriologia , Orelha Interna/patologia , Etilnitrosoureia , Cardiopatias Congênitas/genética , Humanos , Pulmão/embriologia , Camundongos , Proteínas do Tecido Nervoso/análise , Proteínas do Tecido Nervoso/genética , Crista Neural/citologia , Defeitos do Tubo Neural/genética , Receptores Acoplados a Proteínas G/análise , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais
4.
Nucleic Acids Res ; 31(3): e9, 2003 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-12560512

RESUMO

The potential of expression analysis using cDNA microarrays to address complex problems in a wide variety of biological contexts is now being realised. A limiting factor in such analyses is often the amount of RNA required, usually tens of micrograms. To address this problem researchers have turned to methods of improving detection sensitivity, either through increasing fluorescent signal output per mRNA molecule or increasing the amount of target available for labelling by use of an amplification procedure. We present a novel DNA-based method in which an oligonucleotide is incorporated into the 3' end of cDNA during second-strand cDNA synthesis. This sequence provides an annealing site for a single complementary heel primer that directs Taq DNA polymerase amplification of cDNA following multiple cycles of denaturation, annealing and extension. The utility of this technique for transcriptome-wide screening of relative expression levels was compared to two alternative methodologies for production of labelled cDNA target, namely incorporation of fluorescent nucleotides by reverse transcriptase or the Klenow fragment. Labelled targets from two distinct mouse tissues, adult liver and kidney, were compared by hybridisation to a set of cDNA microarrays containing 6500 mouse cDNA probes. Here we demonstrate, through a dilution series of cDNA derived from 10 micro g of total RNA, that it is possible to produce datasets comparable to those produced with unamplified targets with the equivalent of 30 ng of total RNA. The utility of this technique for microarray analysis in cases where sample is limited is discussed.


Assuntos
Primers do DNA , DNA Complementar/síntese química , Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase/métodos , Animais , DNA Polimerase I/metabolismo , Feminino , Camundongos , DNA Polimerase Dirigida por RNA/metabolismo , Reprodutibilidade dos Testes , Taq Polimerase/metabolismo
5.
Dev Dyn ; 238(3): 581-94, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19235720

RESUMO

Vertebrate organs show consistent left-right (L-R) asymmetry in placement and patterning. To identify genes involved in this process we performed an ENU-based genetic screen. Of 135 lines analyzed 11 showed clear single gene defects affecting L-R patterning, including 3 new alleles of known L-R genes and mutants in novel L-R loci. We identified six lines (termed "gasping") that, in addition to abnormal L-R patterning and associated cardiovascular defects, had complex phenotypes including pulmonary agenesis, exencephaly, polydactyly, ocular and craniofacial malformations. These complex abnormalities are present in certain human disease syndromes (e.g., HYLS, SRPS, VACTERL). Gasping embryos also show defects in ciliogenesis, suggesting a role for cilia in these human congenital malformation syndromes. Our results indicate that genes controlling ciliogenesis and left-right asymmetry have, in addition to their known roles in cardiac patterning, major and unexpected roles in pulmonary, craniofacial, ocular and limb development with implications for human congenital malformation syndromes.


Assuntos
Padronização Corporal/genética , Extremidades/embriologia , Olho/embriologia , Ossos Faciais/embriologia , Mutagênese/genética , Sistema Respiratório/embriologia , Sequência de Aminoácidos , Animais , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Olho/metabolismo , Ossos Faciais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Camundongos , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Mutação/genética , Fenótipo , Sistema Respiratório/metabolismo , Alinhamento de Sequência
6.
Genes Dev ; 22(11): 1465-77, 2008 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-18519639

RESUMO

We have identified an ethylnitrosourea (ENU)-induced recessive mouse mutation (Vcc) with a pleiotropic phenotype that includes cardiac, tracheoesophageal, anorectal, anteroposterior patterning defects, exomphalos, hindlimb hypoplasia, a presacral mass, renal and palatal agenesis, and pulmonary hypoplasia. It results from a C470R mutation in the proprotein convertase PCSK5 (PC5/6). Compound mutants (Pcsk5(Vcc/null)) completely recapitulate the Pcsk5(Vcc/Vcc) phenotype, as does an epiblast-specific conditional deletion of Pcsk5. The C470R mutation ablates a disulfide bond in the P domain, and blocks export from the endoplasmic reticulum and proprotein convertase activity. We show that GDF11 is cleaved and activated by PCSK5A, but not by PCSK5A-C470R, and that Gdf11-deficient embryos, in addition to having anteroposterior patterning defects and renal and palatal agenesis, also have a presacral mass, anorectal malformation, and exomphalos. Pcsk5 mutation results in abnormal expression of several paralogous Hox genes (Hoxa, Hoxc, and Hoxd), and of Mnx1 (Hlxb9). These include known Gdf11 targets, and are necessary for caudal embryo development. We identified nonsynonymous mutations in PCSK5 in patients with VACTERL (vertebral, anorectal, cardiac, tracheoesophageal, renal, limb malformation OMIM 192350) and caudal regression syndrome, the phenotypic features of which resemble the mouse mutation. We propose that Pcsk5, at least in part via GDF11, coordinately regulates caudal Hox paralogs, to control anteroposterior patterning, nephrogenesis, skeletal, and anorectal development.


Assuntos
Anormalidades Múltiplas/genética , Padronização Corporal/genética , Pró-Proteína Convertases/genética , Coluna Vertebral/anormalidades , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox , Humanos , Camundongos , Síndrome
7.
Science ; 316(5826): 897-900, 2007 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-17463252

RESUMO

By screening N-ethyl-N-nitrosourea-mutagenized animals for alterations in rhythms of wheel-running activity, we identified a mouse mutation, after hours (Afh). The mutation, a Cys(358)Ser substitution in Fbxl3, an F-box protein with leucine-rich repeats, results in long free-running rhythms of about 27 hours in homozygotes. Circadian transcriptional and translational oscillations are attenuated in Afh mice. The Afh allele significantly affected Per2 expression and delayed the rate of Cry protein degradation in Per2::Luciferase tissue slices. Our in vivo and in vitro studies reveal a central role for Fbxl3 in mammalian circadian timekeeping.


Assuntos
Ritmo Circadiano , Proteínas F-Box/genética , Proteínas F-Box/fisiologia , Mutação Puntual , Fatores de Transcrição ARNTL , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas CLOCK , Células COS , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Chlorocebus aethiops , Ritmo Circadiano/genética , Cruzamentos Genéticos , Criptocromos , Feminino , Flavoproteínas/genética , Flavoproteínas/metabolismo , Regulação da Expressão Gênica , Fígado/metabolismo , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Dados de Sequência Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Circadianas Period , Núcleo Supraquiasmático/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
8.
Hum Mol Genet ; 15(22): 3273-9, 2006 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-17035249

RESUMO

Otitis media (OM), inflammation of the middle ear, is the most common cause of hearing impairment and surgery in children. Recurrent and chronic forms of OM are known to have a strong genetic component, but nothing is known of the underlying genes involved in the human population. We have previously identified a novel semi-dominant mouse mutant, Jeff, in which the heterozygotes develop chronic suppurative OM (Hardisty, R.E., Erven, A., Logan, K., Morse, S., Guionaud, S., Sancho-Oliver, S., Hunter, A.J., Brown, S.D. and Steel, K.P. (2003) The deaf mouse mutant Jeff (Jf) is a single gene model of otitis media. J. Assoc. Res. Otolaryngol., 4, 130-138.) and represent a model for chronic forms of OM in humans. We demonstrate here that Jeff carries a mutation in an F-box gene, Fbxo11. Fbxo11 is expressed in epithelial cells of the middle ears from late embryonic stages through to day 13 of postnatal life. In contrast to Jeff heterozygotes, Jeff homozygotes show cleft palate, facial clefting and perinatal lethality. We have also isolated and characterized an additional hypomorphic mutant allele, Mutt. Mutt heterozygotes do not develop OM but Mutt homozygotes also show facial clefting and cleft palate abnormalities. FBXO11 is one of the first molecules to be identified, contributing to the genetic aetiology of OM. In addition, the recessive effects of mutant alleles of Fbxo11 identify the gene as an important candidate for cleft palate studies in the human population.


Assuntos
Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Mutação/genética , Otite Média/genética , Otite Média/patologia , Proteínas/genética , Proteínas/metabolismo , Alelos , Sequência de Aminoácidos , Animais , Proteínas F-Box/química , Homozigoto , Camundongos , Dados de Sequência Molecular , Otite Média/metabolismo , Fenótipo
9.
Genesis ; 40(2): 109-117, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15384171

RESUMO

Dominantly acting mutations that produce visible phenotypes are frequently recovered, either during routine maintenance of colonies or from mutagenesis experiments. We have studied 12 dominant mouse mutations that cause a tail dysmorphology, a coat spotting phenotype, or a combination of these. The majority of these mutations act in a semidominant manner with the homozygous state associated with embryonic lethality and a visible phenotype at or before midgestation. The homozygous phenotypes include axis truncation and neural crest cell defects, as may be expected from the heterozygous phenotypes. The majority of mutations, however, also produced other phenotypes that include neural tube closure defects and aberrant heart looping. In one coat spotting mutant the homozygous condition is lethal before neural crest cell production commences. The mutated genes often function in processes additional to those alluded to by the heterozygous phenotype.


Assuntos
Desenvolvimento Embrionário/genética , Genes Dominantes , Mutação , Alquilantes/farmacologia , Animais , Animais Congênicos , Biomarcadores , Mapeamento Cromossômico , Etilnitrosoureia/farmacologia , Feminino , Genes Letais , Marcadores Genéticos , Genoma , Cor de Cabelo/genética , Haplótipos , Homozigoto , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Mutantes , Mutagênicos/farmacologia , Polimorfismo Genético , Cauda/anormalidades
10.
Mamm Genome ; 15(8): 585-91, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15457338

RESUMO

N-ethyl-N-nitrosourea (ENU) introduces mutations throughout the mouse genome at relatively high efficiency. Successful high-throughput phenotype screens have been reported and alternative screens using sequence-based approaches have been proposed. For the purpose of generating an allelic series in selected genes by a sequence-based approach, we have constructed an archive of over 4000 DNA samples from individual F1 ENU-mutagenized mice paralleled by frozen sperm samples. Together with our previously reported archive, the total size now exceeds 6000 individuals. A gene-based screen of 27.4 Mbp of DNA, carried out using denaturing high-performance liquid chromatography (DHPLC), found a mutation rate of 1 in 1.01 Mbp of which 1 in 1.82 Mbp were potentially functional. Screening of whole or selected regions of genes on subsets of the archive has allowed us to identify 15 new alleles from 9 genes out of 15 tested. This is a powerful adjunct to conventional mutagenesis strategies and has the advantage of generating a variety of alleles with potentially different phenotypic outcomes that facilitate the investigation of gene function. It is now available to academic collaborators as a community resource.


Assuntos
Alquilantes/farmacologia , Alelos , Etilnitrosoureia/farmacologia , Mutação , Animais , Cromatografia Líquida de Alta Pressão , Análise Mutacional de DNA , Camundongos
11.
Genetica ; 122(1): 47-9, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15619960

RESUMO

With the completion of the first draft of the human genome sequence, the next major challenge is assigning function to genes. One approach is genome-wide random chemical mutagenesis, followed by screening for mutant phenotypes of interest and subsequent mapping and identification of the mutated genes in question. We (a consortium made up of GlaxoSmithKline, the MRC Mammalian Genetics Unit and Mouse Genome Centre, Harwell, Imperial College, London, and the Royal London Hospital) have used ENU mutagenesis in the mouse for the rapid generation of novel mutant phenotypes for use as animal models of human disease and for gene function assignment (Nolan et al., 2000). As of 2003, 35,000 mice have been produced to date in a genome-wide screen for dominant mutations and screened using a variety of screening protocols. Nearly 200 mutants have been confirmed as heritable and added to the mouse mutant catalogue and, overall, we can extrapolate that we have recovered over 700 mutants from the screening programme. For further information on the project and details of the data, see http://www.mgu.har.mrc.ac.uk/mutabase.


Assuntos
Mapeamento Cromossômico , Modelos Animais de Doenças , Genoma , Camundongos/genética , Animais , Mutação , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA