Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Molecules ; 27(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35164038

RESUMO

Essential oils (EOs) of Clausena indica fruits, Zanthoxylum rhetsa fruits, and Michelia tonkinensis seeds were analyzed for their phytochemical profiles and biological activities, including anti-diabetes, anti-gout, and anti-leukemia properties. Sixty-six volatile compounds were identified by gas chromatography-mass spectrometry (GC-MS), in which, myristicin (68.3%), limonene (44.2%), and linalool (49.3%) were the most prominent components of EOs extracted from C. indica, Z. rhetsa, and M. tonkinensis, respectively. In addition, only EOs from C. indica inhibited the activities of all tested enzymes comprising α-amylase (IC50 = 7.73 mg/mL), α-glucosidase (IC50 = 0.84 mg/mL), and xanthine oxidase (IC50 = 0.88 mg/mL), which are related to type 2 diabetes and gout. Remarkably, all EOs from C. indica, Z. rhetsa (IC50 = 0.73 mg/mL), and M. tonkinensis (IC50 = 1.46 mg/mL) showed a stronger anti-α-glucosidase ability than acarbose (IC50 = 2.69 mg/mL), a known anti-diabetic agent. Moreover, the growth of leukemia cell Meg-01 was significantly suppressed by all EOs, of which, the IC50 values were recorded as 0.32, 0.64, and 0.31 mg/mL for EOs from C. indica, Z. rhetsa, and M. tonkinensis, respectively. As it stands, this is the first report about the inhibitory effects of EOs from C. indica and Z. rhetsa fruits, and M. tonkinensis seeds on the human leukemia cell line Meg-01 and key enzymes linked to diabetes and gout. In conclusion, the present study suggests that EOs from these natural spices may be promising candidates for pharmaceutical industries to develop nature-based drugs to treat diabetes mellitus or gout, as well as malignant hematological diseases such as leukemia.


Assuntos
Antineoplásicos/uso terapêutico , Clausena/química , Supressores da Gota/uso terapêutico , Hipoglicemiantes/uso terapêutico , Leucemia/tratamento farmacológico , Magnoliaceae/química , Óleos Voláteis/uso terapêutico , Zanthoxylum/química , Humanos , Óleos Voláteis/química
2.
Molecules ; 27(7)2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35408706

RESUMO

This is the first study to examine the effects of in vitro digestion on biological activities of Sargassum spp., a broadly known brown seaweed for therapeutic potential. Three fractions (F1-F3) were obtained from hexane extract by column chromatography. Under in vitro simulated digestion, the anti-α-amylase capacity of F1 in oral and intestinal phases increases, while it significantly decreases in the gastric phase. The α-amylase inhibition of F2 promotes throughout all digestive stages while the activity of F3 significantly reduces. The cytotoxic activity of F1 against U266 cell-line accelerates over the oral, gastric, and intestinal stages. The fractions F2 and F3 exhibited the declined cytotoxic potentialities in oral and gastric phases, but they were strengthened under intestinal condition. Palmitic acid and fucosterol may play an active role in antidiabetic and cytotoxic activity against multiple myeloma U266 cell line of Sargassum spp. However, the involvement of other phytochemicals in the seaweed should be further investigated.


Assuntos
Sargassum , Alga Marinha , Digestão , Hipoglicemiantes/farmacologia , Compostos Fitoquímicos , Sargassum/química , alfa-Amilases
3.
Molecules ; 27(7)2022 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-35408721

RESUMO

Callerya speciosa is widely distributed in tropical and subtropical countries and is traditionally used for preventing numerous disorders. In this study, a bioguided fractionation of ethyl acetate extract (SE) from C. speciosa root was carried out to target antioxidant and cytotoxic activities. Of the four fractions (SE1-SE4) obtained by column chromatography, SE4 had the strongest anti-radical ability in the DPPH and ABTS assays (IC50 = 0.05 and 0.17 mg/mL, respectively), with results close to butylated hydroxytoluene (BHT), a common antioxidant agent. The cytotoxic activities against the selected cells were analyzed in this study by MTT assay. Accordingly, SE2, SE3, and SE4 significantly inhibited the viability of multiple myeloma cell lines, comprising U266 (IC50 = 0.38, 0.09, and 0.11 mg/mL, respectively) and KMS11 (IC50 = 0.09, 0.17, and 0.15 mg/mL, respectively), mantle cell lymphoma Mino (IC50 = 0.08, 0.16, and 0.15 mg/mL, respectively), and the noncancerous cell line LCL (IC50 = 0.40, 0.32, and 0.21 mg/mL, respectively). At a concentration of 125 µg/mL, SE2, SE3, and SE4 induced the cell apoptosis of U266 (32.2%, 53.2%, and 55.6%, respectively), KMS11 (36.9%, 40.8%, and 47.9%, respectively), Mino (36.6%, 39.8%, and 22.0%, respectively), and LCL (12.4%, 17.5%, and 23.5%, respectively) via annexin V assay. The dominant compounds detected in fractions by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS), were identified as isoflavones. This is the first report describing C. speciosa as a promising natural source of antileukemia and antimyeloma agents, which may be useful for the development of blood cancer treatments.


Assuntos
Fabaceae , Linfoma , Mieloma Múltiplo , Adulto , Antioxidantes/química , Antioxidantes/farmacologia , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Humanos , Linfoma/tratamento farmacológico , Mieloma Múltiplo/tratamento farmacológico , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
4.
Int J Mol Sci ; 22(21)2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34769275

RESUMO

NLR family pyrin domain-containing 3 (NLRP3) is an intracellular protein that after recognizing a broad spectrum of stressors, such as microbial motifs and endogenous danger signals, promotes the activation and release of the pro-inflammatory cytokines IL-1ß and IL-18, thus playing an essential role in the innate immune response. Several blood cell types, including macrophages, dendritic cells, and hematopoietic stem and progenitor cells (HSPCs), express NLRP3, where it has been implicated in various physiological and pathological processes. For example, NLRP3 participates in the development and expansion of HSPCs, and their release from bone marrow into the peripheral blood has been implicated in certain hematological disorders including various types of leukemia. In addition, accumulating evidence indicates that activation of NLRP3 plays a pivotal role in the development of transplant complications in patients receiving hematopoietic stem cell transplantation (HSCT) including graft versus host disease, severe infections, and transplant-related mortality. The majority of these complications are triggered by the severe tissue damage derived from the conditioning regimens utilized in HSCT which, in turn, activates NLRP3 and, ultimately, promotes the release of proinflammatory cytokines such as IL-1ß and IL-18. Here, we summarize the implications of NLRP3 in HSCT with an emphasis on the involvement of this inflammasome component in transplant complications.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transdução de Sinais , Animais , Humanos , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Leucemia/metabolismo , Leucemia/terapia
5.
Cancer Sci ; 111(5): 1663-1675, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32176823

RESUMO

Loss of heterozygosity or mutation of the family with sequence similarity 46, member C (FAM46C) gene on chromosome band 1p12 is associated with shorter overall survival of patients with multiple myeloma (MM). In this study, using human MM cell lines (KMS-11, OCI-My5, and ANBL-6), we generated FAM46C-/- cell clones and examined the effect of disruption of FAM46C on cell survival and cellular signaling. Cell proliferation assays showed increased clonogenicity of FAM46C-/- KMS-11 cells compared to WT cells. Xenograft experiments showed significantly shorter overall survival of mice harboring the FAM46C-/- cell-derived tumors than mice with the FAM46CWT cell-derived tumors. Notably, levels of phosphorylated Akt and its substrates increased both in vitro and in vivo in the FAM46C-/- cells compared to WT cells. In addition, caspase activities decreased in the FAM46C-/- cells. Results of gene set enrichment analysis showed that loss of FAM46C significantly activated serum-responsive genes while inactivating phosphatase and tensin homolog (PTEN)-related genes. Mechanistically, loss of FAM46C decreased the PTEN activity, number of apoptotic cells, and caspase activities. PF-04691502, a selective PI3K inhibitor, suppressed the augmented phosphorylation of Akt and its substrate FoxO3a. Treatment with afuresertib (a specific Akt inhibitor) in combination with bortezomib additively decreased FAM46C-/- MM cell survival. Collectively, this study is the first to report that loss of FAM46C triggers the concomitant activation of the PI3K-Akt signaling pathway, which might be a therapeutic target for MM with abnormalities in the FAM46C gene.


Assuntos
Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Nucleotidiltransferases/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Animais , Antineoplásicos/farmacologia , Bortezomib/farmacologia , Carcinogênese/genética , Ciclo Celular/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Camundongos , Camundongos SCID , Mieloma Múltiplo/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Pirazóis/farmacologia , Tiofenos/farmacologia
6.
FEBS J ; 291(5): 927-944, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38009294

RESUMO

There has been a great deal of research on cell division and its mechanisms; however, its processes still have many unknowns. To find novel proteins that regulate cell division, we performed the screening using siRNAs and/or the expression plasmid of the target genes and identified leucine zipper protein 1 (LUZP1). Recent studies have shown that LUZP1 interacts with various proteins and stabilizes the actin cytoskeleton; however, the function of LUZP1 in mitosis is not known. In this study, we found that LUZP1 colocalized with the chromosomal passenger complex (CPC) at the centromere in metaphase and at the central spindle in anaphase and that these LUZP1 localizations were regulated by CPC activity and kinesin family member 20A (KIF20A). Mass spectrometry analysis identified that LUZP1 interacted with death-associated protein kinase 3 (DAPK3), one regulator of the cleavage furrow ingression in cytokinesis. In addition, we found that LUZP1 also interacted with myosin light chain 9 (MYL9), a substrate of DAPK3, and comprehensively inhibited MYL9 phosphorylation by DAPK3. In line with a known role for MYL9 in the actin-myosin contraction, LUZP1 suppression accelerated the constriction velocity at the division plane in our time-lapse analysis. Our study indicates that LUZP1 is a novel regulator for cytokinesis that regulates the constriction velocity of the contractile ring.


Assuntos
Citocinese , Zíper de Leucina , Citocinese/genética , Constrição , Citoesqueleto de Actina , Mitose
7.
Cancers (Basel) ; 14(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36230771

RESUMO

This is the first study clarifying the cytotoxic mechanism of momilactones A (MA) and B (MB) on acute promyelocytic leukemia (APL) HL-60 and multiple myeloma (MM) U266 cell lines. Via the MTT test, MB and the mixture MAB (1:1, w/w) exhibit a potent cytotoxicity on HL-60 (IC50 = 4.49 and 4.61 µM, respectively), which are close to the well-known drugs doxorubicin, all-trans retinoic acid (ATRA), and the mixture of ATRA and arsenic trioxide (ATRA/ATO) (1:1, w/w) (IC50 = 5.22, 3.99, and 3.67 µM, respectively). Meanwhile MB, MAB, and the standard suppressor doxorubicin substantially inhibit U266 (IC50 = 5.09, 5.59, and 0.24 µM, respectively). Notably, MB and MAB at 5 µM may promote HL-60 and U266 cell apoptosis by activating the phosphorylation of p-38 in the mitogen-activated protein kinase (MAPK) pathway and regulating the relevant proteins (BCL-2 and caspase-3) in the mitochondrial pathway. Besides, these compounds may induce G2 phase arrest in the HL-60 cell cycle through the activation of p-38 and disruption of CDK1 and cyclin B1 complex. Exceptionally, momilactones negligibly affect the non-cancerous cell line MeT-5A. This finding provides novel insights into the anticancer property of momilactones, which can be a premise for future studies and developments of momilactone-based anticancer medicines.

8.
Plants (Basel) ; 10(1)2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33396235

RESUMO

Andropogon virginicus is an invasive weed that seriously threatens agricultural production and economics worldwide. In this research, dried aerial parts of A. virginicus were extracted, applying Soxhlet and liquid-liquid phase methods to acquire the total crude (T-Anvi), hexane (H-Anvi), ethyl acetate (E-Anvi), butanol (B-Anvi), and water (W-Anvi) extracts, respectively. In which, T-Anvi contains the highest total phenolic and flavonoid contents (24.80 mg gallic acid and 37.40 mg rutin equivalents per g dry weight, respectively). Via anti-radical (ABTS and DPPH), and reducing power assays, E-Anvi exhibits the most potent activities (IC50 = 13.96, 43.59 and 124.11 µg/mL, respectively), stronger than butylated hydroxytoluene (BHT), a standard antioxidant, while the lipid peroxidation inhibitory effect of E-Anvi (LPI = 90.85% at the concentration of 500 µg/mL) is close to BHT. E-Anvi shows the most substantial inhibition (IC50 = 2.58 mg/mL) on tyrosinase. Notably, α-amylase is significantly suppressed by H-Anvi (IC50 = 0.72 mg/mL), over twice stronger than the positive control, palmitic acid. In the cytotoxic assay, E-Anvi is the strongest extract inhibiting K562 cells (IC50 = 112.01 µg/mL). Meanwhile, T-Anvi shows the highest prevention on Meg-01 expansion (IC50 = 91.40 µg/mL). Dominant compounds detected in E-Anvi by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) are identified as flavonoids. However, among four major compounds identified in H-Anvi by gas chromatography-mass spectrometry (GC-MS), palmitic acid and phytol are the most abundant compounds with peak areas of 27.97% and 16.42%, respectively. In essence, this is the first report describing that A. virginicus is a potential natural source of antioxidants, tyrosinase and α-amylase inhibitors, and anti-chronic myeloid leukemia (CML) agents which may be useful in future therapeutics as promising alternative medicines.

9.
J Interferon Cytokine Res ; 40(8): 389-405, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32721246

RESUMO

[Figure: see text] Multiple myeloma (MM) remains an intractable hematological malignancy, despite recent advances in anti-MM drugs. Here, we show that role of PDZ binding kinase (PBK) in MM tumor growth. We identified that interleukin-6 (IL-6) readily increases PBK expression. Kaplan-Meier analysis showed that the MM patients with higher expression of PBK have a significant shorter survival time compared with those with moderate/lower expression of PBK. Knockout of PBK dramatically suppressed in vivo tumor growth in MM cells, while genome editing of PBK changing from asparagine to serine substitution (rs3779620) slightly suppresses the tumor formation. Mechanistically, loss of PBK increased the number of apoptotic cells with concomitant decrease in the phosphorylation level of Stat3 as well as caspase activities. A novel PBK inhibitor OTS514 significantly decreased KMS-11-derived tumor growth. These findings highlight the novel oncogenic role of PBK in tumor growth of myeloma, and it might be a novel therapeutic target for the treatment of patients with MM.


Assuntos
Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Interleucina-6/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Substituição de Aminoácidos , Animais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Edição de Genes , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Loci Gênicos , Humanos , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Mieloma Múltiplo/mortalidade , Mieloma Múltiplo/patologia , Fosforilação , Prognóstico , Inibidores de Proteínas Quinases/farmacologia , Fator de Transcrição STAT3 , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA