Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 37(7): e23028, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37310356

RESUMO

Leucine-rich repeat containing 8A (LRRC8A) volume regulated anion channels (VRACs) are activated by inflammatory and pro-contractile stimuli including tumor necrosis factor alpha (TNFα), angiotensin II and stretch. LRRC8A associates with NADPH oxidase 1 (Nox1) and supports extracellular superoxide production. We tested the hypothesis that VRACs modulate TNFα signaling and vasomotor function in mice lacking LRRC8A exclusively in vascular smooth muscle cells (VSMCs, Sm22α-Cre, Knockout). Knockout (KO) mesenteric vessels contracted normally but relaxation to acetylcholine (ACh) and sodium nitroprusside (SNP) was enhanced compared to wild type (WT). Forty-eight hours of ex vivo exposure to TNFα (10 ng/mL) enhanced contraction to norepinephrine (NE) and markedly impaired dilation to ACh and SNP in WT but not KO vessels. VRAC blockade (carbenoxolone, CBX, 100 µM, 20 min) enhanced dilation of control rings and restored impaired dilation following TNFα exposure. Myogenic tone was absent in KO rings. LRRC8A immunoprecipitation followed by mass spectroscopy identified 33 proteins that interacted with LRRC8A. Among them, the myosin phosphatase rho-interacting protein (MPRIP) links RhoA, MYPT1 and actin. LRRC8A-MPRIP co-localization was confirmed by confocal imaging of tagged proteins, Proximity Ligation Assays, and IP/western blots. siLRRC8A or CBX treatment decreased RhoA activity in VSMCs, and MYPT1 phosphorylation was reduced in KO mesenteries suggesting that reduced ROCK activity contributes to enhanced relaxation. MPRIP was a target of redox modification, becoming oxidized (sulfenylated) after TNFα exposure. Interaction of LRRC8A with MPRIP may allow redox regulation of the cytoskeleton by linking Nox1 activation to impaired vasodilation. This identifies VRACs as potential targets for treatment or prevention of vascular disease.


Assuntos
Músculo Liso Vascular , Animais , Camundongos , Acetilcolina/farmacologia , Ânions , Proteínas de Membrana/genética , Camundongos Knockout , Fosfatase de Miosina-de-Cadeia-Leve , Transdução de Sinais , Fator de Necrose Tumoral alfa/farmacologia , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiologia
2.
J Membr Biol ; 256(2): 125-135, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36322172

RESUMO

Chloride channel-3 (ClC-3) Cl-/H+ antiporters and leucine-rich repeat-containing 8 (LRRC8) family anion channels have both been associated with volume-regulated anion currents (VRACs). VRACs are often altered in ClC-3 null cells but are absent in LRRC8A null cells. To explore the relationship between ClC-3, LRRC8A, and VRAC we localized tagged proteins in human epithelial kidney (HEK293) cells using multimodal microscopy. Expression of ClC-3-GFP induced large multivesicular bodies (MVBs) with ClC-3 in the delimiting membrane. LRRC8A-RFP localized to the plasma membrane and to small cytoplasmic vesicles. Co-expression demonstrated co-localization in small, highly mobile cytoplasmic vesicles that associated with the early endosomal marker Rab5A. However, most of the small LRRC8A-positive vesicles were constrained within large MVBs with abundant ClC-3 in the delimiting membrane. Dominant negative (S34A) Rab5A prevented ClC-3 overexpression from creating enlarged MVBs, while constitutively active (Q79L) Rab5A enhanced this phenotype. Thus, ClC-3 and LRRC8A are endocytosed together but independently sorted in Rab5A MVBs. Subsequently, LRRC8A-labeled vesicles were sorted to MVBs labeled by Rab27A and B exosomal compartment markers, but not to Rab11 recycling endosomes. VRAC currents were significantly larger in ClC-3 null HEK293 cells. This work demonstrates dependence of LRRC8A trafficking on ClC-3 which may explain the association between ClC-3 and VRACs.


Assuntos
Canais de Cloreto , Proteínas de Membrana , Humanos , Proteínas de Membrana/metabolismo , Leucina , Células HEK293 , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Ânions/metabolismo
3.
J Physiol ; 599(12): 3013-3036, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33932953

RESUMO

KEY POINTS: LRRC8A-containing anion channels associate with NADPH oxidase 1 (Nox1) and regulate superoxide production and tumour necrosis factor-α (TNFα) signalling. Here we show that LRRC8C and 8D also co-immunoprecipitate with Nox1 in vascular smooth muscle cells. LRRC8C knockdown inhibited TNFα-induced O2•- production, receptor endocytosis, nuclear factor-κB (NF-κB) activation and proliferation while LRRC8D knockdown enhanced NF-κB activation. Significant changes in LRRC8 isoform expression in human atherosclerosis and psoriasis suggest compensation for increased inflammation. The oxidant chloramine-T (ChlorT, 1 mM) weakly (∼25%) inhibited LRRC8C currents but potently (∼80%) inhibited LRRC8D currents. Substitution of the extracellular loop (EL1, EL2) domains of 8D into 8C conferred significantly stronger (69%) ChlorT-dependent inhibition. ChlorT exposure impaired subsequent current block by DCPIB, which occurs through interaction with EL1, further implicating external oxidation sites. LRRC8A/C channels most effectively sustain Nox1 activity at the plasma membrane. This may result from their ability to remain active in an oxidized microenvironment. ABSTRACT: Tumour necrosis factor-α (TNFα) activates NADPH oxidase 1 (Nox1) in vascular smooth muscle cells (VSMCs), producing superoxide (O2•- ) required for subsequent signalling. LRRC8 family proteins A-E comprise volume-regulated anion channels (VRACs). The required subunit LRRC8A physically associates with Nox1, and VRAC activity is required for Nox activity and the inflammatory response to TNFα. VRAC currents are modulated by oxidants, suggesting that channel oxidant sensitivity and proximity to Nox1 may play a physiologically relevant role. In VSMCs, LRRC8C knockdown (siRNA) recapitulated the effects of siLRRC8A, inhibiting TNFα-induced extracellular and endosomal O2•- production, receptor endocytosis, nuclear factor-κB (NF-κB) activation and proliferation. In contrast, siLRRC8D potentiated NF-κB activation. Nox1 co-immunoprecipitated with 8C and 8D, and colocalized with 8D at the plasma membrane and in vesicles. We compared VRAC currents mediated by homomeric and heteromeric LRRC8C and LRRC8D channels expressed in HEK293 cells. The oxidant chloramine T (ChlorT, 1 mM) weakly inhibited 8C, but potently inhibited 8D currents. ChlorT exposure also impaired subsequent current block by the VRAC blocker DCPIB, implicating external sites of oxidation. Substitution of the 8D extracellular loop domains (EL1, EL2) into 8C conferred significantly stronger ChlorT-mediated inhibition of 8C currents. Our results suggest that LRRC8A/C channel activity can be effectively maintained in the oxidized microenvironment expected to result from Nox1 activation at the plasma membrane. Increased ratios of 8D:8C expression may potentially depress inflammatory responses to TNFα. LRRC8A/C channel downregulation represents a novel strategy to reduce TNFα-induced inflammation.


Assuntos
Proteínas de Membrana , NADPH Oxidase 1 , Oxidantes , Superóxidos , Ânions , Células HEK293 , Humanos
4.
Pediatr Crit Care Med ; 21(1): 42-49, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31246738

RESUMO

OBJECTIVES: Cardiopulmonary bypass-induced endothelial dysfunction has been inferred by changes in pulmonary vascular resistance, alterations in circulating biomarkers, and postoperative capillary leak. Endothelial-dependent vasomotor dysfunction of the systemic vasculature has never been quantified in this setting. The objective of the present study was to quantify acute effects of cardiopulmonary bypass on endothelial vasomotor control and attempt to correlate these effects with postoperative cytokines, tissue edema, and clinical outcomes in infants. DESIGN: Single-center prospective observational cohort pilot study. SETTING: Pediatric cardiac ICU at a tertiary children's hospital. PATIENTS: Children less than 1 year old requiring cardiopulmonary bypass for repair of a congenital heart lesion. INTERVENTION: None. MEASUREMENTS AND MAIN RESULTS: Laser Doppler perfusion monitoring was coupled with local iontophoresis of acetylcholine (endothelium-dependent vasodilator) or sodium nitroprusside (endothelium-independent vasodilator) to quantify endothelial-dependent vasomotor function in the cutaneous microcirculation. Measurements were obtained preoperatively, 2-4 hours, and 24 hours after separation from cardiopulmonary bypass. Fifteen patients completed all laser Doppler perfusion monitor (Perimed, Järfälla, Sweden) measurements. Comparing prebypass with 2-4 hours postbypass responses, there was a decrease in both peak perfusion (p = 0.0006) and area under the dose-response curve (p = 0.005) following acetylcholine, but no change in responses to sodium nitroprusside. Twenty-four hours after bypass responsiveness to acetylcholine improved, but typically remained depressed from baseline. Conserved endothelial function was associated with higher urine output during the first 48 postoperative hours (R = 0.43; p = 0.008). CONCLUSIONS: Cutaneous endothelial dysfunction is present in infants immediately following cardiopulmonary bypass and recovers significantly in some patients within 24 hours postoperatively. Confirmation of an association between persistent endothelial-dependent vasomotor dysfunction and decreased urine output could have important clinical implications. Ongoing research will explore the pattern of endothelial-dependent vasomotor dysfunction after cardiopulmonary bypass and its relationship with biochemical markers of inflammation and clinical outcomes.


Assuntos
Ponte Cardiopulmonar/efeitos adversos , Doenças Cardiovasculares/etiologia , Endotélio Vascular/fisiopatologia , Sistema Vasomotor/fisiopatologia , Acetilcolina/uso terapêutico , Biomarcadores/sangue , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Doenças Cardiovasculares/tratamento farmacológico , Criança , Pré-Escolar , Citocinas/sangue , Endotélio Vascular/metabolismo , Cardiopatias Congênitas/cirurgia , Humanos , Lactente , Microcirculação , Óxido Nítrico/sangue , Projetos Piloto , Complicações Pós-Operatórias/etiologia , Estudos Prospectivos , Índice de Gravidade de Doença , Resistência Vascular , Vasodilatadores/uso terapêutico , Sistema Vasomotor/metabolismo
5.
Am J Physiol Heart Circ Physiol ; 316(6): H1528-H1537, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30925081

RESUMO

Tumor necrosis factor-α (TNFα) is a proinflammatory cytokine that is closely linked to the development of cardiovascular disease. TNFα activates NADPH oxidase 1 (Nox1) and reactive oxygen species (ROS), including superoxide (O2·-), production extracellularly is required for subsequent signaling in vascular smooth muscle cells (VSMCs). Apoptosis signal-regulating kinase 1 (ASK1) is a mitogen-activated protein kinase kinase kinase that is activated by oxidation of associated thioredoxin. The role of ASK1 in Nox1-mediated signaling by TNFα is poorly defined. We hypothesized that ASK1 is required for TNFα receptor endocytosis and subsequent inflammatory TNFα signaling. We employed a knockdown strategy to explore the role of ASK1 in TNFα signaling in VSMCs. siRNA targeting ASK1 had no effect on TNFα-induced extracellular O2·- production. However, siASK1 inhibited receptor endocytosis as well as phosphorylation of two endocytosis-related proteins, dynamin1 and caveolin1. Intracellular O2·- production was subsequently reduced, as were other inflammatory signaling steps including NF-κB activation, IL-6 production, inducible nitric oxide synthase and VCAM expression, and VSMC proliferation. Prolonged exposure to TNFα (24 h) increased tumor necrosis factor receptor (TNFR) subtype 1 and 2 expression, and these effects were also attenuated by siASK1. ASK1 coimmunoprecipitated with both Nox1 and the leucine rich repeat containing 8A anion channel, two essential components of the TNFR1 signaling complex. Activation of ASK1 by autophosphorylation at Thr845 occurs following thioredoxin dissociation, and this requires the presence of Nox1. Thus, Nox1 is part of the multiprotein ASK1 signaling complex. In response to TNFα, ASK1 is activated by Nox1-derived oxidants, and this plays a critical role in translating these ROS into a physiologic response in VSMCs. NEW & NOTEWORTHY Apoptosis signal-regulating kinase 1 (ASK1) drives dynamin1 and caveolin1 phosphorylation and TNFα receptor endocytosis. ASK1 modulates TNFα-induced NF-κB activation, survival, and proliferation. ASK1 and NADPH oxidase 1 (Nox1) physically associate in a multiprotein signaling complex. Nox1 is required for TNFα-induced ASK1 activation.


Assuntos
Endocitose , MAP Quinase Quinase Quinase 5/metabolismo , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , NADPH Oxidase 1/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Superóxidos/metabolismo , Animais , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/enzimologia , Células Cultivadas , Endocitose/efeitos dos fármacos , MAP Quinase Quinase Quinase 5/genética , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , NADPH Oxidase 1/genética , Receptores Tipo I de Fatores de Necrose Tumoral/agonistas , Transdução de Sinais , Fator de Necrose Tumoral alfa/farmacologia
6.
FASEB J ; 32(2): 945-956, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29061842

RESUMO

Endothelial dysfunction, characterized by changes in eNOS, is a common finding in chronic inflammatory vascular diseases. These states are associated with increased infectious complications. We hypothesized that alterations in eNOS would enhance the response to LPS-mediated TLR4 inflammation. Human microvascular endothelial cells were treated with sepiapterin or N-nitro-L-arginine methylester (L-NAME) to alter endogenous NO production, and small interfering RNA to knockdown eNOS. Alterations of endogenous NO by sepiapterin, and L-NAME provided no significant changes to LPS inflammation. In contrast, eNOS knockdown greatly enhanced endothelial IL-6 production and permeability in response to LPS. Knockdown of eNOS enhanced LPS-induced p38. Inhibition of p38 with SB203580 prevented IL-6 production, without altering permeability. Knockdown of p38 impaired NF-κB activation. Physical interaction between p38 and eNOS was demonstrated by immunoprecipitation, suggesting a novel, NO-independent mechanism for eNOS regulation of TLR4. In correlation, biopsy samples in patients with systemic lupus erythematous showed reduced eNOS expression with associated elevations in TLR4 and p38, suggesting an in vivo link. Thus, reduced expression of eNOS, as seen in chronic inflammatory disease, was associated with enhanced TLR4 signaling through p38. This may enhance the response to infection in patients with chronic inflammatory conditions.-Stark, R. J., Koch, S. R., Choi, H., Mace, E. H., Dikalov, S. I., Sherwood, E. R., Lamb, F. S. Endothelial nitric oxide synthase modulates Toll-like receptor 4-mediated IL-6 production and permeability via nitric oxide-independent signaling.


Assuntos
Permeabilidade Capilar , Células Endoteliais/metabolismo , Interleucina-6/biossíntese , Sistema de Sinalização das MAP Quinases , Óxido Nítrico Sintase Tipo III/biossíntese , Óxido Nítrico/metabolismo , Receptor 4 Toll-Like/metabolismo , Células Cultivadas , Doença Crônica , Células Endoteliais/patologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Imidazóis/farmacologia , Lipopolissacarídeos/toxicidade , Piridinas/farmacologia , Vasculite/induzido quimicamente , Vasculite/metabolismo , Vasculite/patologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
7.
J Physiol ; 596(17): 4091-4119, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29917234

RESUMO

KEY POINTS: The ClC-3 2Cl- /1H+ exchanger modulates endosome pH and Cl- concentration. We investigated the relationships between ClC-3-mediated ion transport (steady-state transport current, ISS ), gating charge (Q) and cytoplasmic alkalization. ClC-3 transport is functionally unidirectional. ClC-5 and ClC-3 display indistinguishable exchange ratios, but ClC-3 cycling is less "efficient", as reflected by a large Q/ISS . An M531A mutation predicted to increase water-wire stability and cytoplasmic proton supply improves efficiency. Protonation (pH 5.0) of the outer glutamate gate (Gluext ; E224) reduces Q, inhibits transport, and weakens coupling. Removal of the central tyrosine anion gate (Y572S) greatly increases uncoupled anion current. Tyrosine -OH removal (Y572F) alters anion selectivity and impairs coupling. E224 and Y572 act as anion barriers, and contribute to gating. The Y572 side chain and -OH regulate Q movement kinetics and voltage dependence. E224 and Y572 interact to create a "closed" inner gate conformation that maintains coupling during cycling. ABSTRACT: We utilized plasma membrane-localized ClC-3 to investigate relationships between steady-state transport current (ISS ), gating charge (Q) movement, and cytoplasmic alkalization rate. ClC-3 exhibited lower transport efficiency than ClC-5, as reflected by a larger Q/ISS ratio, but an indistinguishable Cl- /H+ coupling ratio. External SCN- reduced H+ transport rate and uncoupled anion/H+ exchange by 80-90%. Removal of the external gating glutamate ("Gluext ") (E224A mutation) reduced Q and abolished H+ transport. We hypothesized that Methionine 531 (M531) impedes "water wire" H+ transfer from the cytoplasm to E224. Accordingly, an M531A mutation decreased the Q/ISS ratio by 50% and enhanced H+ transport. External protons (pH 5.0) inhibited ISS and markedly reduced Q while shifting the Q-voltage (V) relationship positively. The Cl- /H+ coupling ratio at pH 5.0 was significantly increased, consistent with externally protonated Gluext adopting an outward/open position. Internal "anion gate" removal (Y572S) dramatically increased ISS and impaired coupling, without slowing H+ transport rate. Loss of both gates (Y572S/E224A) resulted in a large "open pore" conductance. Y572F (removing only the phenolic hydroxide) and Y572S shortened Q duration similarly, resulting in faster Q kinetics at all voltages. These data reveal a complex relationship between Q and ion transport. Q/ISS must be assessed together with coupling ratio to properly interpret efficiency. Coupling and transport rate are influenced by the anion, internal proton supply and external protons. Y572 regulates H+ coupling as well as anion selectivity, and interacts directly with E224. Disruption of this "closed gate" conformation by internal protons may represent a critical step in the ClC-3 transport cycle.


Assuntos
Ânions/metabolismo , Membrana Celular/metabolismo , Canais de Cloreto/metabolismo , Ácido Glutâmico/metabolismo , Prótons , Tirosina/metabolismo , Canais de Cloreto/genética , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Ativação do Canal Iônico , Transporte de Íons , Cinética , Mutação , Tirosina/genética
8.
Clin Sci (Lond) ; 130(6): 451-61, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26669797

RESUMO

Prior exposure to lipopolysaccharide (LPS) produces a reduced or "tolerant" inflammatory response to subsequent challenges with LPS, however the potent pro-inflammatory effects of LPS limit its clinical benefit. The adjuvant monophosphoryl lipid A (MPLA) is a weak toll-like receptor 4 (TLR4) agonist that induces negligible inflammation but retains potent immunomodulatory properties. We postulated that pre-treatment with MPLA would inhibit the inflammatory response of endothelial cells to secondary LPS challenge. Human umbilical vein endothelial cells (HUVECs), were exposed to MPLA (10 µg/ml), LPS (100 ng/ml) or vehicle control. HUVECs were then washed and maintained in culture for 24 h before being challenged with LPS (100 ng/ml). Supernatants were collected and examined for cytokine production in the presence or absence of siRNA inhibitors of critical TLR4 signalling proteins. Pre-treatment with MPLA attenuated interleukin (IL)-6 production to secondary LPS challenge to a similar degree as LPS. The application of myeloid differentiation primary response gene 88 (MyD88) siRNA dramatically reduced MPLA-induced tolerance while TIR-domain-containing adapter-inducing interferon-ß (TRIF) siRNA had no effect. The tolerant phenotype in endothelial cells was associated with reduced IκB kinase (IKK), p38 and c-Jun N-terminal kinase (JNK) phosphorylation and enhanced IL-1 receptor associated kinase-M (IRAK-M) expression for LPS-primed HUVECs, but less so in MPLA primed cells. Instead, MPLA-primed HUVECs demonstrated enhanced p-extracellular-signal-regulated kinase (ERK) phosphorylation. In contrast with leucocytes in which tolerance is largely TRIF-dependent, MyD88 signalling mediated endotoxin tolerance in endothelial cells. Most importantly, MPLA, a vaccine adjuvant with a wide therapeutic window, induced tolerance to LPS in endothelial cells.


Assuntos
Adjuvantes Imunológicos/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Lipídeo A/análogos & derivados , Fator 88 de Diferenciação Mieloide/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Tolerância Imunológica/efeitos dos fármacos , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Lipídeo A/farmacologia , Lipopolissacarídeos , Fosforilação/efeitos dos fármacos
10.
Am J Physiol Heart Circ Physiol ; 306(8): H1154-63, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24561862

RESUMO

Tumor necrosis factor-α (TNF-α) is a pro-inflammatory cytokine that causes endothelial dysfunction. Endocytosis of TNF-α receptors (TNFR) precedes endosomal reactive oxygen species (ROS) production, which is required for NF-κB activation in vascular smooth muscle cells. It is unknown how endocytosis of TNFRs impacts signaling in endothelial cells. We hypothesized that TNF-α-induced endothelial dysfunction is induced by both endosomal and cell surface events, including NF-κB and mitogen-activated protein kinases (MAPKs) activation, and endocytosis of the TNFR modifies signaling. Mesenteric artery segments from C57BL/6 mice were treated with TNF-α (10 ng/ml) for 22 h in tissue culture, with or without signaling inhibitors (dynasore for endocytosis, SP600125 for JNK, SB203580 for p38, U0126 for ERK), and vascular function was assessed. Endothelium-dependent relaxation to acetylcholine (ACh) was impaired by TNF-α, and dynasore exacerbated this, whereas JNK or p38 inhibition prevented these effects. In cultured endothelial cells from murine mesenteric arteries, dynasore potentiated JNK and p38 but not ERK phosphorylation and promoted cell death. NF-κB activation by TNF-α was decreased by dynasore. JNK inhibition dramatically increased both the magnitude and duration of TNF-α-induced NF-κB activation and potentiated intercellular adhesion molecule-1 (ICAM-1) activation. Dynasore still inhibited NF-κB activation in the presence of SP600125. Thus TNF-α-induced endothelial dysfunction is both JNK and p38 dependent. Endocytosis modulates the balance of NF-κB and MAPK signaling, and inhibition of NF-κB activation by JNK limits this pro-proliferative signal, which may contribute to endothelial cell death in response to TNF-α.


Assuntos
Endocitose/fisiologia , Células Endoteliais/fisiologia , Proteínas Quinases JNK Ativadas por Mitógeno/fisiologia , Fator de Necrose Tumoral alfa/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia , Animais , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Endocitose/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Hidrazonas/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Masculino , Artérias Mesentéricas , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/fisiologia , Inibidores de Proteínas Quinases/farmacologia , Receptores do Fator de Necrose Tumoral/metabolismo , Transdução de Sinais/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
11.
Hypertension ; 81(4): 752-763, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38174563

RESUMO

Vascular inflammation underlies the development of hypertension, and the mechanisms by which it increases blood pressure remain the topic of intense investigation. Proinflammatory factors including glucose, salt, vasoconstrictors, cytokines, wall stress, and growth factors enhance contractility and impair relaxation of vascular smooth muscle cells. These pathways share a dependence upon redox signaling, and excessive activation promotes oxidative stress that promotes vascular aging. Vascular smooth muscle cell phenotypic switching and migration into the intima contribute to atherosclerosis, while hypercontractility increases systemic vascular resistance and vasospasm that can trigger ischemia. Here, we review factors that drive the initiation and progression of this vasculopathy in vascular smooth muscle cells. Emphasis is placed on the contribution of reactive oxygen species generated by the Nox1 NADPH oxidase which produces extracellular superoxide (O2•-). The mechanisms of O2•- signaling remain poorly defined, but recent evidence demonstrates physical association of Nox1 with leucine-rich repeat containing 8 family volume-sensitive anion channels. These may provide a pathway for influx of O2•- to the cytoplasm, creating an oxidized cytoplasmic nanodomain where redox-based signals can affect both cytoskeletal structure and vasomotor function. Understanding the mechanistic links between inflammation, O2•- and vascular smooth muscle cell contractility may facilitate targeting of anti-inflammatory therapy in hypertension.


Assuntos
Hipertensão , Superóxidos , Humanos , Superóxidos/metabolismo , Músculo Liso Vascular/metabolismo , NADPH Oxidase 1/metabolismo , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Hipertensão/metabolismo , Miócitos de Músculo Liso/metabolismo , Células Cultivadas
12.
J Biol Chem ; 287(15): 12395-404, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22235113

RESUMO

NADPH oxidase 2 (Nox2)-generated reactive oxygen species (ROS) are critical for neutrophil (polymorphonuclear leukocyte (PMN)) microbicidal function. Nox2 also plays a role in intracellular signaling, but the site of oxidase assembly is unknown. It has been proposed to occur on secondary granules. We previously demonstrated that intracellular NADPH oxidase-derived ROS production is required for endotoxin priming. We hypothesized that endotoxin drives Nox2 assembly on endosomes. Endotoxin induced ROS generation within an endosomal compartment as quantified by flow cytometry (dihydrorhodamine 123 and Oxyburst Green). Inhibition of endocytosis by the dynamin-II inhibitor Dynasore blocked endocytosis of dextran, intracellular generation of ROS, and priming of PMN by endotoxin. Confocal microscopy demonstrated a ROS-containing endosomal compartment that co-labeled with gp91(phox), p40(phox), p67(phox), and Rab5, but not with the secondary granule marker CD66b. To further characterize this compartment, PMNs were fractionated by nitrogen cavitation and differential centrifugation, followed by free flow electrophoresis. Specific subfractions made superoxide in the presence of NADPH by cell-free assay (cytochrome c). Subfraction content of membrane and cytosolic subunits of Nox2 correlated with ROS production. Following priming, there was a shift in the light membrane subfractions where ROS production was highest. CD66b was not mobilized from the secondary granule compartment. These data demonstrate a novel, nonphagosomal intracellular site for Nox2 assembly. This compartment is endocytic in origin and is required for PMN priming by endotoxin.


Assuntos
Endocitose , Endossomos/metabolismo , Lipopolissacarídeos/farmacologia , NADPH Oxidases/metabolismo , Neutrófilos/imunologia , Espécies Reativas de Oxigênio/metabolismo , Fosfatase Alcalina/metabolismo , Citocromos c/química , Endossomos/enzimologia , Humanos , Membranas Intracelulares/enzimologia , Membranas Intracelulares/metabolismo , Microscopia Confocal , NADPH Oxidases/química , NADPH Oxidases/isolamento & purificação , Neutrófilos/enzimologia , Neutrófilos/fisiologia , Oxirredução , Consumo de Oxigênio , Espécies Reativas de Oxigênio/química , Frações Subcelulares/enzimologia , Frações Subcelulares/metabolismo
13.
Free Radic Biol Med ; 209(Pt 1): 152-164, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37852546

RESUMO

TNFα activates NADPH oxidase 1 (Nox1) in vascular smooth muscle cells (VSMCs). The extracellular superoxide anion (O2•-) produced is essential for the pro-inflammatory effects of the cytokine but the specific contributions of O2•- to signal transduction remain obscure. Extracellular superoxide dismutase (ecSOD, SOD3 gene) is a secreted protein that binds to cell surface heparin sulfate proteoglycans or to Fibulin-5 (Fib-5, FBLN5 gene), an extracellular matrix protein that also associates with elastin and integrins. ecSOD converts O2•- to hydrogen peroxide (H2O2) which prevents NO• inactivation, limits generation of hydroxyl radical (OH•), and creates high local concentrations of H2O2. We hypothesized that ecSOD modifies TNFα signaling in VSMCs. Knockdown of ecSOD (siSOD3) suppressed downstream TNFα signals including MAPK (JNK and ERK phosphorylation) and NF-κB activation (luciferase reporter and IκB phosphorylation), interleukin-6 (IL-6) secretion, iNOS and VCAM expression, and proliferation (Sulforhodamine B assay, PCNA western blot). These effects were associated with significant reductions in the expression of both Type1 and 2 TNFα receptors. Reduced Fib-5 expression (siFBLN5) similarly impaired NF-κB activation by TNFα, but potentiated FAK phosphorylation at Y925. siSOD3 also increased both resting and TNFα-induced phosphorylation of FAK and of glycogen synthase kinase-3ß (GSK3ß), a downstream target of integrin linked kinase (ILK). These effects were dependent upon α5ß1 integrins and siSOD3 increased resting sulfenylation (oxidation) of both integrin subunits, while preventing TNFα-induced increases in sulfenylation. To determine how ecSOD modified TNFα-induced inflammation in intact blood vessels, mesenteric arteries from VSMC-specific ecSOD knockout (KO) mice were exposed to TNFα (10 ng/ml) in culture for 48 h. Relaxation to acetylcholine and sodium nitroprusside was impaired in WT but not ecSOD KO vessels. Thus, ecSOD association with Fib-5 supports pro-inflammatory TNFα signaling while tonically inhibiting α5ß1 integrin activation.


Assuntos
Músculo Liso Vascular , Fator de Necrose Tumoral alfa , Camundongos , Animais , Músculo Liso Vascular/metabolismo , Fator de Necrose Tumoral alfa/genética , Superóxido Dismutase/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Peróxido de Hidrogênio/metabolismo , Ativação Transcricional , Transdução de Sinais , Integrinas/genética , Integrinas/metabolismo
14.
bioRxiv ; 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36945623

RESUMO

Background: In vascular smooth muscle cells (VSMCs), LRRC8A volume regulated anion channels (VRACs) are activated by inflammatory and pro-contractile stimuli including tumor necrosis factor alpha (TNFα), angiotensin II and stretch. LRRC8A physically associates with NADPH oxidase 1 (Nox1) and supports its production of extracellular superoxide (O 2 -• ). Methods and Results: Mice lacking LRRC8A exclusively in VSMCs (Sm22α-Cre, KO) were used to assess the role of VRACs in TNFα signaling and vasomotor function. KO mesenteric vessels contracted normally to KCl and phenylephrine, but relaxation to acetylcholine (ACh) and sodium nitroprusside (SNP) was enhanced compared to wild type (WT). 48 hours of ex vivo exposure to TNFα (10ng/ml) markedly impaired dilation to ACh and SNP in WT but not KO vessels. VRAC blockade (carbenoxolone, CBX, 100 µM, 20 min) enhanced dilation of control rings and restored impaired dilation following TNFα exposure. Myogenic tone was absent in KO rings. LRRC8A immunoprecipitation followed by mass spectroscopy identified 35 proteins that interacted with LRRC8A. Pathway analysis revealed actin cytoskeletal regulation as the most closely associated function of these proteins. Among these proteins, the Myosin Phosphatase Rho-Interacting protein (MPRIP) links RhoA, MYPT1 and actin. LRRC8A-MPRIP co-localization was confirmed by confocal imaging of tagged proteins, Proximity Ligation Assays, and IP/western blots which revealed LRRC8A binding at the second Pleckstrin Homology domain of MPRIP. siLRRC8A or CBX treatment decreased RhoA activity in cultured VSMCs, and MYPT1 phosphorylation at T853 was reduced in KO mesenteries suggesting that reduced ROCK activity contributes to enhanced relaxation. MPRIP was a target of redox modification, becoming oxidized (sulfenylated) after TNFα exposure. Conclusions: Interaction of Nox1/LRRC8A with MPRIP/RhoA/MYPT1/actin may allow redox regulation of the cytoskeleton and link Nox1 activation to both inflammation and vascular contractility.

15.
Am J Physiol Regul Integr Comp Physiol ; 303(5): R513-9, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22832534

RESUMO

Intrauterine growth restriction is associated with increased fetal glucocorticoid exposure and an increased risk of adult coronary artery disease. Coronary arteries from sheep exposed to early gestation dexamethasone (Dex) have increased constriction to angiotensin II (ANG II). Prostaglandin E(2) (PGE(2)) helps maintain coronary dilation, but PGE(2) production is acutely decreased by Dex administration. We hypothesized early gestation Dex exposure impairs adult coronary PGE(2) production with subsequent increases in coronary reactivity. Dex was administered to ewes at 27-28 days gestation (term 145 days). Coronary reactivity was assessed by wire myography in offspring at 4 mo of age (N = 5 to 7). Coronary smooth muscle cells were cultured and prostaglandin production was measured after 90 min incubation with radiolabeled arachidonate. Coronary myocytes from Dex-exposed lambs had a significant decrease in PGE(2) production that was reversed with ANG II incubation. Dex-exposed coronary arteries had increased constriction to ANG II and attenuated dilatation to arachidonic acid, with the greatest difference seen after the endothelium was inactivated by rubbing. Preincubation with the cyclooxygenase (COX) inhibitor indomethacin altered control responses and recapitulated the heightened coronary tone seen following Dex exposure. We conclude that impaired coronary smooth muscle COX-mediated PGE(2) production contributes to the coronary dysfunction elicited by early gestation Dex. Programmed inhibition of vasodilatory prostanoid production may link an adverse intrauterine environment with adult coronary artery disease.


Assuntos
Vasos Coronários/efeitos dos fármacos , Vasos Coronários/metabolismo , Dexametasona/farmacologia , Dinoprostona/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Prostaglandinas/metabolismo , Vasodilatação/efeitos dos fármacos , Angiotensina II/farmacologia , Animais , Células Cultivadas , Vasos Coronários/citologia , Inibidores de Ciclo-Oxigenase/farmacologia , Feminino , Glucocorticoides/farmacologia , Indometacina/farmacologia , Modelos Animais , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Gravidez , Ovinos , Vasoconstrição/efeitos dos fármacos , Vasoconstrição/fisiologia , Vasoconstritores , Vasodilatação/fisiologia
16.
Arterioscler Thromb Vasc Biol ; 31(2): 345-51, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21071705

RESUMO

OBJECTIVE: We have shown that the chloride-proton antiporter chloride channel-3 (ClC-3) is required for endosome-dependent signaling by the Nox1 NADPH oxidase in SMCs. In this study, we tested the hypothesis that ClC-3 is necessary for proliferation of smooth muscle cells (SMCs) and contributes to neointimal hyperplasia following vascular injury. METHODS AND RESULTS: Studies were performed in SMCs isolated from the aorta of ClC-3-null and littermate control (wild-type [WT]) mice. Thrombin and tumor necrosis factor-α (TNF-α) each caused activation of both mitogen activated protein kinase extracellular signal-regulated kinases 1 and 2 and the matrix-degrading enzyme matrix metalloproteinase-9 and cell proliferation of WT SMCs. Whereas responses to thrombin were preserved in ClC-3-null SMCs, the responses to TNF-α were markedly impaired. These defects normalized following gene transfer of ClC-3. Carotid injury increased vascular ClC-3 expression, and compared with WT mice, ClC-3-null mice exhibited a reduction in neointimal area of the carotid artery 28 days after injury. CONCLUSIONS: ClC-3 is necessary for the activation of SMCs by TNF-α but not thrombin. Deficiency of ClC-3 markedly reduces neointimal hyperplasia following vascular injury. In view of our previous findings, this observation is consistent with a role for ClC-3 in endosomal Nox1-dependent signaling. These findings identify ClC-3 as a novel target for the prevention of inflammatory and proliferative vascular diseases.


Assuntos
Proliferação de Células , Canais de Cloreto/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Neointima/metabolismo , Animais , Células Cultivadas , Canais de Cloreto/genética , Endossomos/metabolismo , Hiperplasia , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Modelos Animais , NADH NADPH Oxirredutases/metabolismo , NADPH Oxidase 1 , Transdução de Sinais/fisiologia , Fator de Necrose Tumoral alfa/metabolismo
18.
J Biol Chem ; 285(30): 22864-73, 2010 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-20479003

RESUMO

ClC-3 is a Cl(-)/H(+) antiporter required for cytokine-induced intraendosomal reactive oxygen species (ROS) generation by Nox1. ClC-3 current is distinct from the swelling-activated chloride current (ICl(swell)), but overexpression of ClC-3 can activate currents that resemble ICl(swell). Because H(2)O(2) activates ICl(swell) directly, we hypothesized that ClC-3-dependent, endosomal ROS production activates ICl(swell). Whole-cell perforated patch clamp methods were used to record Cl(-) currents in cultured aortic vascular smooth muscle cells from wild type (WT) and ClC-3 null mice. Under isotonic conditions, tumor necrosis factor-alpha (TNF-alpha) (10 ng/ml) activated outwardly rectifying Cl(-) currents with time-dependent inactivation in WT but not ClC-3 null cells. Inhibition by tamoxifen (10 microm) and by hypertonicity (340 mosm) identified them as ICl(swell). ICl(swell) was also activated by H(2)O(2) (500 microm), and the effect of TNF-alpha was completely inhibited by polyethylene glycol-catalase. ClC-3 expression induced ICl(swell) in ClC-3 null cells in the absence of swelling or TNF-alpha, and this effect was also blocked by catalase. ICl(swell) activation by hypotonicity (240 mosm) was only partially inhibited by catalase, and the size of these currents did not differ between WT and ClC-3 null cells. Disruption of endosome trafficking with either mutant Rab5 (S34N) or Rab11 (S25N) inhibited TNF-alpha-mediated activation of ICl(swell). Thrombin also activates ROS production by Nox1 but not in endosomes. Thrombin caused H(2)O(2)-dependent activation of ICl(swell), but this effect was not ClC-3- or Rab5-dependent. Thus, activation of ICl(swell) by TNF-alpha requires ClC-3-dependent endosomal H(2)O(2) production. This demonstrates a functional link between two distinct anion currents, ClC-3 and ICl(swell).


Assuntos
Canais de Cloreto/metabolismo , Cloretos/metabolismo , Condutividade Elétrica , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Animais , Linhagem Celular , Peróxido de Hidrogênio/metabolismo , Camundongos , Trombina/farmacologia
19.
Cell Physiol Biochem ; 28(6): 1265-78, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22179014

RESUMO

Activation of volume regulated chloride channels (VRCCs) has been shown to be cardioprotective in ischemic preconditioning (IPC) of isolated hearts but the underlying molecular mechanisms remain unclear. Recent independent studies support that ClC-3, a ClC voltage-gated chloride channel, may function as a key component of the VRCCs. Thus, ClC-3 knockout (Clcn3(-/-)) mice and their age-matched heterozygous (Clcn3(+/-)) and wild-type (Clcn3(+/+)) littermates were used to test whether activation of VRCCs contributes to cardioprotection in early and/or second-window IPC. Targeted disruption of ClC-3 gene caused a decrease in the body weight but no changes in heart/body weight ratio. Telemetry ECG and echocardiography revealed no differences in ECG and cardiac function under resting conditions among all groups. Under treadmill stress (10 m/min for 10 min), the Clcn3(-/-) mice had significant slower heart rate (648±12 bpm) than Clcn3(+/+) littermates (737±19 bpm, n=6, P<0.05). Ex vivo IPC in the isolated working-heart preparations protected cardiac function during reperfusion and significantly decreased apoptosis and infarct size in all groups. In vivo early IPC significantly reduced infarct size in all groups including Clcn3(-/-) mice (22.7±3.7% vs control 40.1±4.3%, n=22, P=0.004). Second-window IPC significantly reduced apoptosis and infarction in Clcn3(+/+) (22.9±3.2% vs 45.7±5.4%, n=22, P<0.001) and Clcn3(+/-) mice (27.5±4.1% vs 42.2±5.7%, n=15, P<0.05) but not in Clcn3(-/-) littermates (39.8±4.9% vs 41.5±8.2%, n=13, P>0.05). Impaired cell volume regulation of the Clcn3(-/-) myocytes may contribute to the failure of cardioprotection by second-window IPC. These results strongly support that activation of VRCCs may play an important cardioprotective role in second-window IPC.


Assuntos
Canais de Cloreto/metabolismo , Precondicionamento Isquêmico Miocárdico , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/metabolismo , Animais , Apoptose , Peso Corporal , Caspase 3/metabolismo , Tamanho Celular , Canais de Cloreto/genética , Ecocardiografia , Eletrocardiografia , Frequência Cardíaca , Camundongos , Camundongos Knockout , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Condicionamento Físico Animal
20.
Clin Sci (Lond) ; 121(10): 427-36, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21615331

RESUMO

Intra-uterine growth restriction is an independent risk factor for adult psychiatric and cardiovascular diseases. In humans, intra-uterine growth restriction is associated with increased placental and fetal oxidative stress, as well as down-regulation of placental 11ß-HSD (11ß-hydroxysteroid dehydrogenase). Decreased placental 11ß-HSD activity increases fetal exposure to maternal glucocorticoids, further increasing fetal oxidative stress. To explore the developmental origins of co-morbid hypertension and anxiety disorders, we increased fetal glucocorticoid exposure by administering the 11ß-HSD inhibitor CBX (carbenoxolone; 12 mg·kg-1 of body weight·day-1) during the final week of murine gestation. We hypothesized that maternal antioxidant (tempol throughout pregnancy) would block glucocorticoid-programmed anxiety, vascular dysfunction and hypertension. Anxiety-related behaviour (conditioned fear) and the haemodynamic response to stress were measured in adult mice. Maternal CBX administration significantly increased conditioned fear responses of adult females. Among the offspring of CBX-injected dams, maternal tempol markedly attenuated the behavioural and cardiovascular responses to psychological stress. Compared with offspring of undisturbed dams, male offspring of dams that received daily third trimester saline injections had increased stress-evoked pressure responses that were blocked by maternal tempol. In contrast, tempol did not block CBX-induced aortic dysfunction in female mice (measured by myography and lucigenin-enhanced chemiluminescence). We conclude that maternal stress and exaggerated fetal glucocorticoid exposure enhance sex-specific stress responses, as well as alterations in aortic reactivity. Because concurrent tempol attenuated conditioned fear and stress reactivity even among the offspring of saline-injected dams, we speculate that antenatal stressors programme offspring stress reactivity in a cycle that may be broken by antenatal antioxidant therapy.


Assuntos
Antioxidantes/uso terapêutico , Óxidos N-Cíclicos/uso terapêutico , Medo/efeitos dos fármacos , Troca Materno-Fetal , Prenhez , Efeitos Tardios da Exposição Pré-Natal , Estresse Psicológico/prevenção & controle , 11-beta-Hidroxiesteroide Desidrogenases/antagonistas & inibidores , 11-beta-Hidroxiesteroide Desidrogenases/fisiologia , Animais , Transtornos de Ansiedade/metabolismo , Aorta/efeitos dos fármacos , Aorta/fisiologia , Carbenoxolona/farmacologia , Condicionamento Psicológico/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Feminino , Hipertensão/induzido quimicamente , Hipertensão/embriologia , Hipertensão/prevenção & controle , Masculino , Troca Materno-Fetal/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Gravidez , Fatores Sexuais , Marcadores de Spin , Estresse Psicológico/fisiopatologia , Telemetria/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA