Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cell ; 185(22): 4135-4152.e22, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36257314

RESUMO

Recent studies have begun to reveal critical roles for the brain's professional phagocytes, microglia, and their receptors in the control of neurotoxic amyloid beta (Aß) and myelin debris accumulation in neurodegenerative disease. However, the critical intracellular molecules that orchestrate neuroprotective functions of microglia remain poorly understood. In our studies, we find that targeted deletion of SYK in microglia leads to exacerbated Aß deposition, aggravated neuropathology, and cognitive defects in the 5xFAD mouse model of Alzheimer's disease (AD). Disruption of SYK signaling in this AD model was further shown to impede the development of disease-associated microglia (DAM), alter AKT/GSK3ß-signaling, and restrict Aß phagocytosis by microglia. Conversely, receptor-mediated activation of SYK limits Aß load. We also found that SYK critically regulates microglial phagocytosis and DAM acquisition in demyelinating disease. Collectively, these results broaden our understanding of the key innate immune signaling molecules that instruct beneficial microglial functions in response to neurotoxic material.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Animais , Camundongos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides , Modelos Animais de Doenças , Camundongos Transgênicos , Microglia/patologia , Fagocitose
2.
Nature ; 580(7805): 647-652, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32350463

RESUMO

Neurodevelopment is characterized by rapid rates of neural cell proliferation and differentiation followed by massive cell death in which more than half of all recently generated brain cells are pruned back. Large amounts of DNA damage, cellular debris, and by-products of cellular stress are generated during these neurodevelopmental events, all of which can potentially activate immune signalling. How the immune response to this collateral damage influences brain maturation and function remains unknown. Here we show that the AIM2 inflammasome contributes to normal brain development and that disruption of this immune sensor of genotoxic stress leads to behavioural abnormalities. During infection, activation of the AIM2 inflammasome in response to double-stranded DNA damage triggers the production of cytokines as well as a gasdermin-D-mediated form of cell death known as pyroptosis1-4. We observe pronounced AIM2 inflammasome activation in neurodevelopment and find that defects in this sensor of DNA damage result in anxiety-related behaviours in mice. Furthermore, we show that the AIM2 inflammasome contributes to central nervous system (CNS) homeostasis specifically through its regulation of gasdermin-D, and not via its involvement in the production of the cytokines IL-1 and/or IL-18. Consistent with a role for this sensor of genomic stress in the purging of genetically compromised CNS cells, we find that defective AIM2 inflammasome signalling results in decreased neural cell death both in response to DNA damage-inducing agents and during neurodevelopment. Moreover, mutations in AIM2 lead to excessive accumulation of DNA damage in neurons as well as an increase in the number of neurons that incorporate into the adult brain. Our findings identify the inflammasome as a crucial player in establishing a properly formed CNS through its role in the removal of genetically compromised cells.


Assuntos
Encéfalo/crescimento & desenvolvimento , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Inflamassomos/metabolismo , Animais , Animais Recém-Nascidos , Ansiedade/patologia , Ansiedade/fisiopatologia , Ansiedade/psicologia , Comportamento Animal/fisiologia , Encéfalo/citologia , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Caspase 1/deficiência , Caspase 1/metabolismo , Morte Celular , Proteínas de Ligação a DNA/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Mutação , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Neurônios/patologia , Proteínas de Ligação a Fosfato/metabolismo
3.
Mol Psychiatry ; 28(3): 1101-1111, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36481930

RESUMO

We developed an IGFBP2-mimetic peptide fragment, JB2, and showed that it promotes basal synaptic structural and functional plasticity in cultured neurons and mice. We demonstrate that JB2 directly binds to dendrites and synapses, and its biological activity involves NMDA receptor activation, gene transcription and translation, and IGF2 receptors. It is not IGF1 receptor-dependent. In neurons, JB2 induced extensive remodeling of the membrane phosphoproteome. Synapse and cytoskeletal regulation, autism spectrum disorder (ASD) risk factors, and a Shank3-associated protein network were significantly enriched among phosphorylated and dephosphorylated proteins. Haploinsufficiency of the SHANK3 gene on chromosome 22q13.3 often causes Phelan-McDermid Syndrome (PMS), a genetically defined form of autism with profound deficits in motor behavior, sensory processing, language, and cognitive function. We identified multiple disease-relevant phenotypes in a Shank3 heterozygous mouse and showed that JB2 rescued deficits in synaptic function and plasticity, learning and memory, ultrasonic vocalizations, and motor function; it also normalized neuronal excitability and seizure susceptibility. Notably, JB2 rescued deficits in the auditory evoked response latency, alpha peak frequency, and steady-state electroencephalography response, measures with direct translational value to human subjects. These data demonstrate that JB2 is a potent modulator of neuroplasticity with therapeutic potential for the treatment of PMS and ASD.


Assuntos
Transtorno do Espectro Autista , Transtornos Cromossômicos , Humanos , Camundongos , Animais , Transtorno do Espectro Autista/genética , Proteínas do Tecido Nervoso/genética , Deleção Cromossômica , Transtornos Cromossômicos/genética , Peptídeos/genética , Modelos Animais de Doenças , Plasticidade Neuronal , Cromossomos Humanos Par 22/metabolismo , Proteínas dos Microfilamentos/genética
4.
Brain Behav Immun ; 108: 80-97, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36343752

RESUMO

Perturbations to the in utero environment can dramatically change the trajectory of offspring neurodevelopment. Insults commonly encountered in modern human life such as infection, toxins, high-fat diet, prescription medications, and others are increasingly linked to behavioral alterations in prenatally-exposed offspring. While appreciation is expanding for the potential consequence that these triggers can have on embryo development, there is a paucity of information concerning how the crucial maternal-fetal interface (MFI) responds to these various insults and how it may relate to changes in offspring neurodevelopment. Here, we found that the MFI responds both to an inflammatory state and altered serotonergic tone in pregnant mice. Maternal immune activation (MIA) triggered an acute inflammatory response in the MFI dominated by interferon signaling that came at the expense of ordinary development-related transcriptional programs. The major MFI compartments, the decidua and the placenta, each responded in distinct manners to MIA. MFIs exposed to MIA were also found to have disrupted sex-specific gene expression and heightened serotonin levels. We found that offspring exposed to MIA had sex-biased behavioral changes and that microglia were not transcriptionally impacted. Moreover, the combination of maternal inflammation in the presence of pharmacologic inhibition of serotonin reuptake further transformed MFI physiology and offspring neurobiology, impacting immune and serotonin signaling pathways alike. In all, these findings highlight the complexities of evaluating diverse environmental impacts on placental physiology and neurodevelopment.


Assuntos
Placenta , Efeitos Tardios da Exposição Pré-Natal , Masculino , Gravidez , Camundongos , Animais , Feminino , Humanos , Placenta/metabolismo , Serotonina/metabolismo , Neurobiologia , Inflamação/metabolismo
5.
RNA Biol ; 17(8): 1183-1195, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31983265

RESUMO

tRNA-derived small fragments (tRFs) and tRNA halves have emerging functions in different biological pathways, such as regulating gene expression, protein translation, retrotransposon activity, transgenerational epigenetic changes and response to environmental stress. However, small RNAs like tRFs and microRNAs in the maternal-fetal interface during gestation have not been studied extensively. Here we investigated the small RNA composition of mouse placenta/decidua, which represents the interface where the mother communicates with the foetus, to determine whether there are specific differences in tRFs and microRNAs during fetal development and in response to maternal immune activation (MIA). Global tRF expression pattern, just like microRNAs, can distinguish tissue types among placenta/decidua, fetal brain and fetal liver. In particular, 5' tRNA halves from tRNAGly, tRNAGlu, tRNAVal and tRNALys are abundantly expressed in the normal mouse placenta/decidua. Moreover, tRF and microRNA levels in the maternal-fetal interface change dynamically over the course of embryonic development. To see if stress alters non-coding RNA expression at the maternal-fetal interface, we treated pregnant mice with a viral infection mimetic, which has been shown to promote autism-related phenotypes in the offspring. Acute changes in the levels of specific tRFs and microRNAs were observed 3-6 h after MIA and are suppressed thereafter. A group of 5' tRNA halves is down-regulated by MIA, whereas a group of 18-nucleotide tRF-3a is up-regulated. In conclusion, tRFs show tissue-specificity, developmental changes and acute response to environmental stress, opening the possibility of them having a role in the fetal response to MIA.


Assuntos
Transtorno Autístico/etiologia , MicroRNAs/genética , Placenta/metabolismo , Pequeno RNA não Traduzido/genética , RNA de Transferência/genética , Animais , Transtorno Autístico/metabolismo , Transtorno Autístico/psicologia , Decídua/metabolismo , Feminino , Regulação da Expressão Gênica , Camundongos , MicroRNAs/metabolismo , Gravidez , Pequeno RNA não Traduzido/metabolismo , RNA de Transferência/metabolismo
6.
J Immunol ; 201(3): 845-850, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29967099

RESUMO

Recent studies suggest that autism is often associated with dysregulated immune responses and altered microbiota composition. This has led to growing speculation about potential roles for hyperactive immune responses and the microbiome in autism. Yet how microbiome-immune cross-talk contributes to neurodevelopmental disorders currently remains poorly understood. In this study, we report critical roles for prenatal microbiota composition in the development of behavioral abnormalities in a murine maternal immune activation (MIA) model of autism that is driven by the viral mimetic polyinosinic-polycytidylic acid. We show that preconception microbiota transplantation can transfer susceptibility to MIA-associated neurodevelopmental disease and that this is associated with modulation of the maternal immune response. Furthermore, we find that ablation of IL-17a signaling provides protection against the development of neurodevelopmental abnormalities in MIA offspring. Our findings suggest that microbiota landscape can influence MIA-induced neurodevelopmental disease pathogenesis and that this occurs as a result of microflora-associated calibration of gestational IL-17a responses.


Assuntos
Transtorno Autístico/imunologia , Transtorno Autístico/microbiologia , Sistema Imunitário/imunologia , Microbiota/imunologia , Efeitos Tardios da Exposição Pré-Natal/imunologia , Animais , Modelos Animais de Doenças , Feminino , Interleucina-17/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Poli I-C/imunologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/microbiologia
7.
Nat Commun ; 11(1): 4524, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32913280

RESUMO

Traumatic brain injury (TBI) is a leading global cause of death and disability. Here we demonstrate in an experimental mouse model of TBI that mild forms of brain trauma cause severe deficits in meningeal lymphatic drainage that begin within hours and last out to at least one month post-injury. To investigate a mechanism underlying impaired lymphatic function in TBI, we examined how increased intracranial pressure (ICP) influences the meningeal lymphatics. We demonstrate that increased ICP can contribute to meningeal lymphatic dysfunction. Moreover, we show that pre-existing lymphatic dysfunction before TBI leads to increased neuroinflammation and negative cognitive outcomes. Finally, we report that rejuvenation of meningeal lymphatic drainage function in aged mice can ameliorate TBI-induced gliosis. These findings provide insights into both the causes and consequences of meningeal lymphatic dysfunction in TBI and suggest that therapeutics targeting the meningeal lymphatic system may offer strategies to treat TBI.


Assuntos
Lesões Encefálicas/fisiopatologia , Gliose/fisiopatologia , Sistema Glinfático/fisiologia , Meninges/fisiopatologia , Animais , Lesões Encefálicas/complicações , Lesões Encefálicas/patologia , Lesões Encefálicas/terapia , Dependovirus/genética , Modelos Animais de Doenças , Feminino , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Gliose/etiologia , Gliose/patologia , Gliose/prevenção & controle , Sistema Glinfático/patologia , Humanos , Masculino , Meninges/patologia , Camundongos , Fator C de Crescimento do Endotélio Vascular/genética , Fator C de Crescimento do Endotélio Vascular/uso terapêutico
8.
Methods Mol Biol ; 1960: 227-236, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30798536

RESUMO

Autism spectrum disorder (ASD) has emerged as one of the most prevalent and poorly understood disorders of our time. The etiology of autism currently remains poorly understood; however, emerging clinical and experimental evidence suggests central roles for maternal immune activation (MIA) during pregnancy in ASD. In particular, children whose mothers suffered from an infectious disease or other inflammatory conditions during pregnancy are at a substantially higher risk of developing ASD. It has been shown that MIA-induced ASD can be modeled by treating pregnant mice with the viral mimetic polyinosinic-polycytidylic acid (PolyI:C) during key neurodevelopmental time points. In this paradigm, PolyI:C treatment induces systemic inflammatory responses that model MIA during viral infections. Offspring from PolyI:C-treated mothers develop many of the defining features of ASD including defects in social interactions, communicative impairments, and repetitive/stereotyped behaviors, as well as neuropathologies that are commonly observed in human ASD. While the early use of this emerging ASD model system has provided important initial insights into the involvement of gestational immune dysfunction in neurodevelopmental disorder pathogenesis, we have only just begun to scratch the surface in our understanding of how MIA affects brain maturation and contributes to neurodevelopmental disease. Here we describe best practices for how the PolyI:C model of MIA can be used to study autism-related disorders in mice.


Assuntos
Transtorno do Espectro Autista/imunologia , Microbiota/fisiologia , Animais , Transtorno do Espectro Autista/induzido quimicamente , Comportamento Animal , Modelos Animais de Doenças , Feminino , Camundongos , Poli I-C/farmacologia , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA