Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Soft Matter ; 20(23): 4608-4620, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38813847

RESUMO

Responsive hollow microgels are a fascinating class of soft model systems at the crossover between polymer capsules and microgels. The presence of the cavity makes them promising materials for encapsulation and controlled release applications but also confers them an additional softness that is reflected by their peculiar behaviour in bulk and at interfaces. Their responsivity to external stimuli, such as temperature, pH, and ionic strength, can be designed from their synthesis conditions and the choice of functional moieties. So far most studies have focused on "small" hollow microgels that were mostly studied with scattering or atomic force microscopy techniques. In our previous study, we have shown that large fluorescent hollow poly(N-isopropylacrylamide) (PNIPAM) microgels could be synthesized using micrometer-sized silica particles as sacrificial templates allowing their investigation in situ via confocal microscopy. In this work, we extend this approach to charged large hollow microgels based on poly(N-isopropylacrylamide-co-itaconic acid) (P(NIPAM-co-IA)). Hereby, we compare the structure and responsivity of "neutral" (PNIPAM) and "charged" (P(NIPAM-co-IA)) hollow microgel systems synthesized under similar conditions with the same sacrificial template using confocal and atomic force microscopy and light scattering techniques. In particular, we could demonstrate the extremely soft character of the swollen charged hollow microgels and their responsivity to pH, ionic strength, and temperature. To conclude this study, the buckling behavior of the different capsules was investigated illustrating the potential of such systems to change its conformation by varying the osmotic pressure and pH conditions.

2.
ACS Nano ; 17(8): 7257-7271, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37053566

RESUMO

Hollow microgels are fascinating model systems at the crossover between polymer vesicles, emulsions, and colloids as they deform, interpenetrate, and eventually shrink at higher volume fraction or when subjected to an external stress. Here, we introduce a system consisting of microgels with a micrometer-sized cavity enabling a straightforward characterization in situ using fluorescence microscopy techniques. Similarly to elastic capsules, these systems are found to reversibly buckle above a critical osmotic pressure, conversely to smaller hollow microgels, which were previously reported to deswell at high volume fraction. Simulations performed on monomer-resolved in silico hollow microgels confirm the buckling transition and show that the presented microgels can be described with a thin shell model theory. When brought to an interface, these microgels, that we define as microgel capsules, strongly deform and we thus propose to utilize them to locally probe interfacial properties within a theoretical framework adapted from the Johnson-Kendall-Roberts (JKR) theory. Besides their capability to sense their environment and to address fundamental questions on the elasticity and permeability of microgel systems, microgel capsules can be further envisioned as model systems mimicking anisotropic responsive biological systems such as red blood and epithelial cells thanks to the possibility offered by microgels to be synthesized with custom-designed properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA