Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Nature ; 565(7737): 86-90, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30532001

RESUMO

Animals and humans display two types of response to noxious stimuli. The first includes reflexive defensive responses that prevent or limit injury; a well-known example of these responses is the quick withdrawal of one's hand upon touching a hot object. When the first-line response fails to prevent tissue damage (for example, a finger is burnt), the resulting pain invokes a second-line coping response-such as licking the injured area to soothe suffering. However, the underlying neural circuits that drive these two strings of behaviour remain poorly understood. Here we show in mice that spinal neurons marked by coexpression of TAC1Cre and LBX1Flpo drive coping responses associated with pain. Ablation of these spinal neurons led to the loss of both persistent licking and conditioned aversion evoked by stimuli (including skin pinching and burn injury) that-in humans-produce sustained pain, without affecting any of the reflexive defensive reactions that we tested. This selective indifference to sustained pain resembles the phenotype seen in humans with lesions of medial thalamic nuclei1-3. Consistently, spinal TAC1-lineage neurons are connected to medial thalamic nuclei by direct projections and via indirect routes through the superior lateral parabrachial nuclei. Furthermore, the anatomical and functional segregation observed at the spinal level also applies to primary sensory neurons. For example, in response to noxious mechanical stimuli, MRGPRD- and TRPV1-positive nociceptors are required to elicit reflexive and coping responses, respectively. Our study therefore reveals a fundamental subdivision within the cutaneous somatosensory system, and challenges the validity of using reflexive defensive responses to measure sustained pain.


Assuntos
Adaptação Psicológica/fisiologia , Dor Crônica/fisiopatologia , Dor Crônica/psicologia , Vias Neurais/fisiologia , Animais , Aprendizagem da Esquiva , Condicionamento Clássico , Feminino , Humanos , Masculino , Núcleo Mediodorsal do Tálamo/citologia , Núcleo Mediodorsal do Tálamo/fisiologia , Camundongos , Neurônios Aferentes/fisiologia , Núcleos Parabraquiais/citologia , Núcleos Parabraquiais/fisiologia , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Canais de Cátion TRPV/metabolismo , Taquicininas/genética , Taquicininas/metabolismo
2.
Int J Mol Sci ; 23(9)2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35563669

RESUMO

BACKGROUND: Capsaicin, the hot pepper agent, produces burning followed by desensitization. To treat localized itch or pain with minimal burning, low capsaicin concentrations can be repeatedly applied. We hypothesized that alternatively controlled release of capsaicin from poly(lactic-co-glycolic acid) (PLGA) nanoparticles desensitizes superficially terminating nociceptors, reducing burning. METHODS: Capsaicin-loaded PLGA nanoparticles were prepared (single-emulsion solvent evaporation) and characterized (size, morphology, capsaicin loading, encapsulation efficiency, in vitro release profile). Capsaicin-PLGA nanoparticles were applied to murine skin and evaluated in healthy human participants (n = 21) for 4 days under blinded conditions, and itch and nociceptive sensations evoked by mechanical, heat stimuli and pruritogens cowhage, ß-alanine, BAM8-22 and histamine were evaluated. RESULTS: Nanoparticles (loading: 58 µg capsaicin/mg) released in vitro 23% capsaicin within the first hour and had complete release at 72 h. In mice, 24 h post-application Capsaicin-PLGA nanoparticles penetrated the dermis and led to decreased nociceptive behavioral responses to heat and mechanical stimulation (desensitization). Application in humans produced a weak to moderate burning, dissipating after 3 h. A loss of heat pain up to 2 weeks was observed. After capsaicin nanoparticles, itch and nociceptive sensations were reduced in response to pruritogens cowhage, ß-alanine or BAM8-22, but were normal to histamine. CONCLUSIONS: Capsaicin nanoparticles could be useful in reducing pain and itch associated with pruritic diseases that are histamine-independent.


Assuntos
Capsaicina , Nanopartículas , Animais , Capsaicina/farmacologia , Glicóis , Histamina , Temperatura Alta , Humanos , Camundongos , Dor/tratamento farmacológico , Prurido/induzido quimicamente , Prurido/tratamento farmacológico , beta-Alanina
3.
Proc Natl Acad Sci U S A ; 114(49): 13036-13041, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29109250

RESUMO

Tactile-foraging ducks are specialist birds known for their touch-dependent feeding behavior. They use dabbling, straining, and filtering to find edible matter in murky water, relying on the sense of touch in their bill. Here, we present the molecular characterization of embryonic duck bill, which we show contains a high density of mechanosensory corpuscles innervated by functional rapidly adapting trigeminal afferents. In contrast to chicken, a visually foraging bird, the majority of duck trigeminal neurons are mechanoreceptors that express the Piezo2 ion channel and produce slowly inactivating mechano-current before hatching. Furthermore, duck neurons have a significantly reduced mechano-activation threshold and elevated mechano-current amplitude. Cloning and electrophysiological characterization of duck Piezo2 in a heterologous expression system shows that duck Piezo2 is functionally similar to the mouse ortholog but with prolonged inactivation kinetics, particularly at positive potentials. Knockdown of Piezo2 in duck trigeminal neurons attenuates mechano current with intermediate and slow inactivation kinetics. This suggests that Piezo2 is capable of contributing to a larger range of mechano-activated currents in duck trigeminal ganglia than in mouse trigeminal ganglia. Our results provide insights into the molecular basis of mechanotransduction in a tactile-specialist vertebrate.


Assuntos
Proteínas Aviárias/genética , Bico/fisiologia , Patos/fisiologia , Mecanorreceptores/metabolismo , Percepção do Tato/fisiologia , Tato/fisiologia , Sequência de Aminoácidos , Animais , Proteínas Aviárias/antagonistas & inibidores , Proteínas Aviárias/metabolismo , Bico/citologia , Bico/inervação , Galinhas , Clonagem Molecular , Embrião não Mamífero , Expressão Gênica , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Células HEK293 , Humanos , Canais Iônicos/antagonistas & inibidores , Canais Iônicos/genética , Canais Iônicos/metabolismo , Cinética , Mecanorreceptores/citologia , Mecanotransdução Celular , Camundongos , Técnicas de Patch-Clamp , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Gânglio Trigeminal/citologia , Gânglio Trigeminal/metabolismo
4.
Nat Rev Neurosci ; 15(1): 19-31, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24356071

RESUMO

Chemicals that are used experimentally to evoke itch elicit activity in diverse subpopulations of cutaneous pruriceptive neurons, all of which also respond to painful stimuli. However, itch is distinct from pain: it evokes different behaviours, such as scratching, and originates from the skin or certain mucosae but not from muscle, joints or viscera. New insights regarding the neurons that mediate the sensation of itch have been gained from experiments in which gene expression has been manipulated in different types of pruriceptive neurons as well as from comparisons between psychophysical measurements of itch and the neuronal discharges and other properties of peripheral and central pruriceptive neurons.


Assuntos
Encéfalo/fisiologia , Rede Nervosa/fisiologia , Prurido/fisiopatologia , Células Receptoras Sensoriais/fisiologia , Animais , Humanos , Prurido/psicologia , Transdução de Sinais/fisiologia , Pele/inervação , Pele/fisiopatologia
5.
Brain Behav Immun ; 80: 464-473, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30981714

RESUMO

Spontaneous itch and pain are the most common symptoms in various skin diseases, including allergic contact dermatitis (ACD). The chemokine (C-C motif) ligand 2 (CCL2, also referred to as monocyte chemoattractant protein 1 (MCP-1)) and its receptor CCR2 are involved in the pathophysiology of ACD, but little is known of the role of CCL2/CCR2 for the itch- and pain-behaviors accompanying the murine model of this disorder, termed contact hypersensitivity (CHS). C57BL/6 mice previously sensitized to the hapten, squaric acid dibutyl ester, applied to the abdomen were subsequently challenged twice with the hapten delivered to either the cheek or to the hairy skin of the hind paw resulting in CHS at that site. By 24 h after the 2nd challenge to the hind paw CCL2 and CCR2 mRNA, protein, and signaling activity were upregulated in the dorsal root ganglion (DRG). Calcium imaging and whole-cell current-clamp recordings revealed that CCL2 directly acted on its neuronal receptor, CCR2 to activate a subset of small-diameter, nociceptive-like DRG neurons retrogradely labeled from the CHS site. Intradermal injection of CCL2 into the site of CHS on the cheek evoked site-directed itch- and pain-like behaviors which could be attenuated by prior delivery of an antagonist of CCR2. In contrast, CCL2 failed to elicit either type of behavior in control mice. Results are consistent with the hypothesis that CHS upregulates CCL2/CCR2 signaling in a subpopulation of cutaneous small diameter DRG neurons and that CCL2 can activate these neurons through neuronal CCR2 to elicit itch- and pain-behavior. Targeting the CCL2/CCR2 signaling might be beneficial for the treatment of the itch and pain sensations accompanying ACD in humans.


Assuntos
Quimiocina CCL2/metabolismo , Dermatite Alérgica de Contato/metabolismo , Receptores CCR2/metabolismo , Animais , Quimiocina CCL2/fisiologia , Ciclobutanos/farmacologia , Dermatite Alérgica de Contato/fisiopatologia , Modelos Animais de Doenças , Gânglios Espinais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dor/metabolismo , Técnicas de Patch-Clamp , Prurido/metabolismo , Receptores CCR2/fisiologia , Células Receptoras Sensoriais/metabolismo , Transdução de Sinais , Pele/metabolismo
6.
J Neurophysiol ; 118(1): 619-624, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28446581

RESUMO

Persistent itch often accompanies allergic contact dermatitis (ACD), but the underlying mechanisms remain largely unexplored. We previously demonstrated that CXCL10/CXCR3 signaling activated a subpopulation of cutaneous primary sensory neurons and mediated itch response after contact hypersensitivity (CHS), a murine model of ACD, induced by squaric acid dibutylester. The purpose of this study was to determine the ionic mechanisms underlying CXCL10-induced neuronal activation and allergic itch. In whole cell recordings, CXCL10 triggered a current in dorsal root ganglion (DRG) neurons innervating the area of CHS. This current was modulated by intracellular Cl- and blocked by the general Cl- channel inhibitors. Moreover, increasing Ca2+ buffering capacity reduced this current. In addition, blockade of Cl- channels significantly suppressed CXCL10-induced Ca2+ response. In behavioral tests, injection of CXCL10 into CHS site exacerbated itch-related scratching behaviors. Moreover, the potentiating behavioral effects of CXCL10 were attenuated by either of two Cl- channel blockers. Thus we suggest that the Cl- channel acts as a downstream target mediating the excitatory and pruritic behavioral effects of CXCL10. Cl- channels may provide a promising therapeutic target for the treatment of allergic itch in which CXCL10/CXCR3 signaling may participate.NEW & NOTEWORTHY The ionic mechanisms underlying CXCL10-induced neuronal activation and allergic itch are largely unexplored. This study revealed that CXCL10 evoked an ionic current mainly carried by Cl- channels. We suggest that Cl- channels are likely key molecular candidates responsible for the CXCL10-evoked neuronal activation and itch-like behaviors in a murine model of allergic contact dermatitis induced by the antigen squaric acid dibutylester. Cl- channels may emerge as a promising drug target for the treatment of allergic itch in which CXCL10/CXCR3 signaling may participate.


Assuntos
Quimiocina CXCL10/metabolismo , Canais de Cloreto/metabolismo , Dermatite Alérgica de Contato/metabolismo , Neurônios/metabolismo , Prurido/metabolismo , Animais , Cálcio/metabolismo , Células Cultivadas , Quimiocina CXCL10/administração & dosagem , Cloretos/metabolismo , Ciclobutanos , Dermatite Alérgica de Contato/patologia , Modelos Animais de Doenças , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Espaço Intracelular/metabolismo , Íons/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Neurônios/patologia , Prurido/patologia , Receptores CXCR3/metabolismo , Pele/inervação , Pele/metabolismo , Pele/patologia
7.
Adv Exp Med Biol ; 904: 23-32, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26900060

RESUMO

This chapter is an overview of published observations from our laboratory on the psychophysics and neurobiology of the persistent itch and pain of allergic contact dermatitis (ACD). ACD is a clinically significant problem with many features characteristic of other pruritic disorders. Our approach was to produce ACD experimentally in humans and in the mouse. The goal was to use the mouse as an animal model for investigating the peripheral neural mechanisms of itch and pain of ACD in humans. Humans and mice were each sensitized by cutaneous topical application of squaric acid dibutyl ester, a hapten not encountered in the environment. Subsequent challenge at another cutaneous site produced local inflammation ("ACD") with humans reporting persistent itch (lasting up to a week) and mice exhibiting persistent itch- and pain-like behaviors directed toward the ACD site. Enhanced mechanically evoked itch and pain in surrounding skin in humans were reversibly blocked by numbing the ACD site with cold, suggesting dependence on ongoing activity from the site. In mice, in vivo recordings revealed spontaneous activity in a subset of pruriceptive, mechanoheat-sensitive nociceptors with unmyelinated axons innervating the ACD site. These and a larger subpopulation of acutely dissociated small-diameter neurons innervating the ACD site exhibited an upregulation of the receptor CXCR3 and excitatory responses to one of its ligands, the chemokine CXCL10 (IP-10) that contributes to the pathogenesis of ACD. Preliminary findings point to possible therapeutic targets that could be investigated in inflammatory itch disorders in humans.


Assuntos
Dermatite Alérgica de Contato/fisiopatologia , Modelos Animais , Nociceptividade/fisiologia , Prurido/fisiopatologia , Animais , Quimiocina CXCL10/fisiologia , Crioterapia , Ciclobutanos/toxicidade , Dermatite Alérgica de Contato/etiologia , Dermatite Alérgica de Contato/psicologia , Dermatite Alérgica de Contato/terapia , Feminino , Temperatura Alta/efeitos adversos , Humanos , Inflamação , Masculino , Camundongos , Fibras Nervosas Amielínicas/fisiologia , Nociceptores/efeitos dos fármacos , Nociceptores/fisiologia , Prurido/induzido quimicamente , Prurido/psicologia , Receptores CXCR3/fisiologia , Especificidade da Espécie
8.
Proc Natl Acad Sci U S A ; 110(2): 594-9, 2013 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-23267071

RESUMO

The ability to determine the gene expression pattern in low quantities of cells or single cells is important for resolving a variety of problems in many biological disciplines. A robust description of the expression signature of a single cell requires determination of the full-length sequence of the expressed mRNAs in the cell, yet existing methods have either 3' biased or variable transcript representation. Here, we report our protocols for the amplification and high-throughput sequencing of very small amounts of RNA for sequencing using procedures of either semirandom primed PCR or phi29 DNA polymerase-based DNA amplification, for the cDNA generated with oligo-dT and/or random oligonucleotide primers. Unlike existing methods, these protocols produce relatively uniformly distributed sequences covering the full length of almost all transcripts independent of their sizes, from 1,000 to 10 cells, and even with single cells. Both protocols produced satisfactory detection/coverage of the abundant mRNAs from a single K562 erythroleukemic cell or a single dorsal root ganglion neuron. The phi29-based method produces long products with less noise, uses an isothermal reaction, and is simple to practice. The semirandom primed PCR procedure is more sensitive and reproducible at low transcript levels or with low quantities of cells. These methods provide tools for mRNA sequencing or RNA sequencing when only low quantities of cells, a single cell, or even degraded RNA are available for profiling.


Assuntos
Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , RNA Mensageiro/genética , Análise de Célula Única/métodos , Primers do DNA/genética , Humanos , Células K562 , Reação em Cadeia da Polimerase/métodos
9.
Brain ; 137(Pt 4): 1039-50, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24549959

RESUMO

Itch is a common symptom of diseases of the skin but can also accompany diseases of other tissues including the nervous system. Acute itch from chemicals experimentally applied to the skin is initiated and maintained by action potential activity in a subset of nociceptive neurons. But whether these pruriceptive neurons are active or might become intrinsically more excitable under the pathological conditions that produce persistent itch and nociceptive sensations in humans is largely unexplored. Recently, two distinct types of cutaneous nociceptive dorsal root ganglion neurons were identified as responding to pruritic chemicals and playing a role in itch sensation. One expressed the mas-related G-coupled protein receptor MRGPRA3 and the other MRGPRD (MRGPRA3+ and MRGPRD+ neurons, respectively). Here we tested whether these two distinct pruriceptive nociceptors exhibited an enhanced excitability after the development of contact hypersensitivity, an animal model of allergic contact dermatitis, a common pruritic disorder in humans. The characteristics of increased excitability of pruriceptive neurons during this disorder may also pertain to the same types of neurons active in other pruritic diseases or pathologies that affect the nervous system and other tissues or organs. We found that challenging the skin of the calf of the hind paw or the cheek of previously sensitized mice with the hapten, squaric acid dibutyl ester, produced symptoms of contact hypersensitivity including an increase in skin thickness and site-directed spontaneous pain-like (licking or wiping) and itch-like (biting or scratching) behaviours. Ablation of MRGPRA3+ neurons led to a significant reduction in spontaneous scratching of the hapten-challenged nape of the neck of previously sensitized mice. In vivo, electrophysiological recordings revealed that MRGPRA3+ and MRGPRD+ neurons innervating the hapten-challenged skin exhibited a greater incidence of spontaneous activity and/or abnormal after-discharges in response to mechanical and heat stimuli applied to their receptive fields compared with neurons from the vehicle-treated control animals. Whole-cell recordings in vitro showed that both MRGPRA3+ and MRGPRD+ neurons from hapten-challenged mice displayed a significantly more depolarized resting membrane potential, decreased rheobase, and greater number of action potentials at twice rheobase compared with neurons from vehicle controls. These signs of neuronal hyperexcitability were associated with a significant increase in the peak amplitude of tetrodotoxin-sensitive and resistant sodium currents. Thus, the hyperexcitability of MRGPRA3+ and MRGPRD+ neurons, brought about in part by enhanced sodium currents, may contribute to the spontaneous itch- and pain-related behaviours accompanying contact hypersensitivity and/or other inflammatory diseases in humans.


Assuntos
Dermatite de Contato/metabolismo , Neurônios/metabolismo , Nociceptores/fisiologia , Prurido/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Dermatite de Contato/fisiopatologia , Modelos Animais de Doenças , Gânglios Espinais/metabolismo , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Dor/metabolismo , Técnicas de Patch-Clamp , Prurido/etiologia , Pele/inervação
10.
J Neurosci ; 32(28): 9554-62, 2012 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-22787041

RESUMO

Chronic pain may accompany immune-related disorders with an elevated level of serum IgG immune complex (IgG-IC), but the underlying mechanisms are obscure. We previously demonstrated that IgG-IC directly excited a subpopulation of dorsal root ganglion (DRG) neurons through the neuronal Fc-gamma receptor I (FcγRI). This might be a mechanism linking IgG-IC to pain and hyperalgesia. The purpose of this study was to investigate the signaling pathways and transduction channels activated downstream of IgG-IC and FcγRI. In whole-cell recordings, IgG-IC induced a nonselective cation current (I(IC)) in the rat DRG neurons, carried by Ca(2+) and Na(+). The I(IC) was potentiated or attenuated by, respectively, lowering or increasing the intracellular Ca(2+) buffering capacity, suggesting that this current was regulated by intracellular calcium. Single-cell RT-PCR revealed that transient receptor potential canonical 3 (TRPC3) mRNA was always coexpressed with FcγRI mRNA in the same DRG neuron. Moreover, ruthenium red (a general TRP channel blocker), BTP2 (a general TRPC channel inhibitor), and pyrazole-3 (a selective TRPC3 blocker) each potently inhibited the I(IC). Specific knockdown of TRPC3 using small interfering RNA attenuated the IgG-IC-induced Ca(2+) response and the I(IC). Additionally, the I(IC) was blocked by the tyrosine kinase Syk inhibitor OXSI-2, the phospholipase C (PLC) inhibitor neomycin, and either the inositol triphosphate (IP(3)) receptor antagonist 2-aminoethyldiphenylborinate or heparin. These results indicated that the activation of neuronal FcγRI triggers TRPC channels through the Syk-PLC-IP(3) pathway and that TRPC3 is a key molecular target for the excitatory effect of IgG-IC on DRG neurons.


Assuntos
Gânglios Espinais/citologia , Imunoglobulina G/imunologia , Imunoglobulina G/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Canais de Cátion TRPC/metabolismo , Acetanilidas/farmacologia , Anilidas/farmacologia , Animais , Biofísica , Cálcio/metabolismo , Cátions/metabolismo , Células Cultivadas , Quelantes/farmacologia , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Estimulação Elétrica , Inibidores Enzimáticos/farmacologia , Feminino , Potenciais da Membrana/genética , Neurônios/fisiologia , Técnicas de Patch-Clamp , Purinas/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de IgG/metabolismo , Rutênio Vermelho/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Estatísticas não Paramétricas , Canais de Cátion TRPC/agonistas , Canais de Cátion TRPC/antagonistas & inibidores , Canais de Cátion TRPC/genética , Tiadiazóis/farmacologia , Transfecção
11.
J Neurosci ; 32(42): 14532-7, 2012 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-23077038

RESUMO

ß-Alanine, a popular supplement for muscle building, induces itch and tingling after consumption, but the underlying molecular and neural mechanisms are obscure. Here we show that, in mice, ß-alanine elicited itch-associated behavior that requires MrgprD, a G-protein-coupled receptor expressed by a subpopulation of primary sensory neurons. These neurons exclusively innervate the skin, respond to ß-alanine, heat, and mechanical noxious stimuli but do not respond to histamine. In humans, intradermally injected ß-alanine induced itch but neither wheal nor flare, suggesting that the itch was not mediated by histamine. Thus, the primary sensory neurons responsive to ß-alanine are likely part of a histamine-independent itch neural circuit and a target for treating clinical itch that is unrelieved by anti-histamines.


Assuntos
Prurido/etiologia , Prurido/metabolismo , Receptores Acoplados a Proteínas G/biossíntese , beta-Alanina/toxicidade , Adulto , Animais , Feminino , Gânglios Espinais/metabolismo , Gânglios Espinais/fisiologia , Técnicas de Introdução de Genes , Humanos , Injeções Intradérmicas/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Prurido/genética , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/fisiologia , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/patologia , Adulto Jovem
12.
J Neurosci ; 31(20): 7563-7, 2011 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-21593341

RESUMO

Chronic itch accompanying many dermatological, neurological, and systemic diseases is unresponsive to antihistamines. Our knowledge of endogenous chemicals that evoke histamine-independent itch and their molecular targets is very limited. Recently it was demonstrated in behavioral and cellular experiments that bovine adrenal medulla 8-22 peptide (BAM8-22), a proteolytically cleaved product of proenkephalin A, is a potent activator of Mas-related G-protein-coupled receptors (Mrgprs), MrgprC11 and hMrgprX1, and induces scratching in mice in an Mrgpr-dependent manner. To study the sensory qualities that BAM8-22 evokes in humans, we tested the volar forearm of 15 healthy volunteers with heat-inactivated cowhage spicules previously soaked in the peptide. BAM8-22 produced itch in each subject, usually accompanied by sensations of pricking/stinging and burning. The sensations were occasionally accompanied by one or more mechanically evoked dysesthesias, namely alloknesis, hyperknesis, and/or hyperalgesia, but no wheal or neurogenic flare in the skin surrounding the application site. The inactive truncated peptide BAM8-18 produced weak or no sensations. Pretreatment of the tested skin with an antihistamine cream (doxepin) inhibited histamine-induced sensations, dysesthesias, and skin reactions but not the sensations and dysesthesias evoked by BAM8-22. We show that BAM8-22 produces itch and nociceptive sensations in humans in a histamine-independent manner. Thus, BAM8-22 may be an endogenous itch mediator that activates, in humans, MrgprX1, a novel target for potential anti-itch treatments.


Assuntos
Encefalinas/toxicidade , Liberação de Histamina/fisiologia , Dor/induzido quimicamente , Fragmentos de Peptídeos/toxicidade , Precursores de Proteínas/toxicidade , Prurido/induzido quimicamente , Sensação/fisiologia , Adulto , Animais , Bovinos , Feminino , Liberação de Histamina/efeitos dos fármacos , Humanos , Masculino , Pessoa de Meia-Idade , Dor/fisiopatologia , Prurido/fisiopatologia , Sensação/efeitos dos fármacos , Adulto Jovem
13.
J Neurosci ; 31(42): 14841-9, 2011 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-22016517

RESUMO

Despite its clinical importance, the underlying neural mechanisms of itch sensation are poorly understood. In many diseases, pruritus is not effectively treated with antihistamines, indicating the involvement of nonhistaminergic mechanisms. To investigate the role of small myelinated afferents in nonhistaminergic itch, we tested, in psychophysical studies in humans, the effect of a differential nerve block on itch produced by intradermal insertion of spicules from the pods of a cowhage plant (Mucuna pruriens). Electrophysiological experiments in anesthetized monkey were used to investigate the responsiveness of cutaneous, nociceptive, myelinated afferents to different chemical stimuli (cowhage spicules, histamine, capsaicin). Our results provide several lines of evidence for an important role of myelinated fibers in cowhage-induced itch: (1) a selective conduction block in myelinated fibers substantially reduces itch in a subgroup of subjects with A-fiber-dominated itch, (2) the time course of itch sensation differs between subjects with A-fiber- versus C-fiber-dominated itch, (3) cowhage activates a subpopulation of myelinated and unmyelinated afferents in monkey, (4) the time course of the response to cowhage is different in myelinated and unmyelinated fibers, (5) the time of peak itch sensation for subjects with A-fiber-dominated itch matches the time for peak response in myelinated fibers, and (6) the time for peak itch sensation for subjects with C-fiber-dominated itch matches the time for the peak response in unmyelinated fibers. These findings demonstrate that activity in nociceptive, myelinated afferents contributes to cowhage-induced sensations, and that nonhistaminergic itch is mediated through activity in both unmyelinated and myelinated afferents.


Assuntos
Fibras Nervosas Mielinizadas/fisiologia , Nociceptores/fisiologia , Prurido/patologia , Prurido/fisiopatologia , Sensação/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Área Sob a Curva , Biofísica , Capsaicina/efeitos adversos , Estimulação Elétrica/métodos , Feminino , Histamina/efeitos adversos , Humanos , Macaca fascicularis , Masculino , Mucuna/química , Fibras Nervosas Mielinizadas/efeitos dos fármacos , Condução Nervosa/efeitos dos fármacos , Nociceptores/efeitos dos fármacos , Limiar da Dor/efeitos dos fármacos , Limiar da Dor/fisiologia , Estimulação Física , Estruturas Vegetais/efeitos adversos , Pressão/efeitos adversos , Prurido/induzido quimicamente , Psicofísica/métodos , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/fisiologia , Pele/inervação , Estatísticas não Paramétricas , Fatores de Tempo
14.
J Neurophysiol ; 106(6): 3067-72, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21917996

RESUMO

Chronic compression (CCD) of the dorsal root ganglion (DRG) is a model of human radicular pain produced by intraforaminal stenosis and other disorders affecting the DRG, spinal nerve, or root. Previously, we examined electrophysiological changes in small-diameter lumbar level 3 (L3) and L4 DRG neurons treated with CCD; the present study extends these observations to medium-sized DRG neurons, which mediate additional sensory modalities, both nociceptive and non-nociceptive. Whole-cell patch-clamp recordings were obtained from medium-sized somata in the intact DRG in vitro. Compared with neurons from unoperated control animals, CCD neurons exhibited a decrease in the current threshold for action potential generation. In the CCD group, current densities of TTX-resistant and TTX-sensitive Na(+) current were increased, whereas the density of delayed rectifier voltage-dependent K(+) current was decreased. No change was observed in the transient or "A" current after CCD. We conclude that CCD in the mouse produces hyperexcitability in medium-sized DRG neurons, and the hyperexcitability is associated with an increased density of Na(+) current and a decreased density of delayed rectifier voltage-dependent K(+) current.


Assuntos
Gânglios Espinais/patologia , Ativação do Canal Iônico/fisiologia , Neurônios/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Radiculopatia/patologia , Canais de Sódio/metabolismo , Análise de Variância , Animais , Biofísica , Modelos Animais de Doenças , Estimulação Elétrica , Lateralidade Funcional , Técnicas In Vitro , Ativação do Canal Iônico/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos , Neurônios/classificação , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Bloqueadores dos Canais de Potássio/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia , Tetraetilamônio/farmacologia , Tetrodotoxina/farmacologia
15.
J Neurophysiol ; 106(1): 211-8, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21525373

RESUMO

We investigated the effects of chronic compression (CCD) of the L3 and L4 dorsal root ganglion (DRG) on pain behavior in the mouse and on the electrophysiological properties of the small-diameter neuronal cell bodies in the intact ganglion. CCD is a model of human radicular pain produced by intraforaminal stenosis and other disorders affecting the DRG, spinal nerve, or root. On days 1, 3, 5, and 7 after the onset of compression, there was a significant decrease from preoperative values in the threshold mechanical force required to elicit a withdrawal of the foot ipsilateral to the CCD (tactile allodynia). Whole cell patch-clamp recordings were obtained, in vitro, from small-sized somata and, for the first time, in the intact DRG. Under current clamp, CCD neurons exhibited a significantly lower rheobase compared with controls. A few CCD but no control neurons exhibited spontaneous action potentials. CCD neurons showed an increase in the density of TTX-resistant and TTX-sensitive Na(+) current. CCD neurons also exhibited an enhanced density of voltage-dependent K(+) current, due to an increase in delayed rectifier K(+) current, without a change in the transient or "A" current. We conclude that CCD in the mouse produces a model of radicular pain, as we have previously demonstrated in the rat. While the role of enhanced K(+) current remains to be elucidated, we speculate that it represents a compensatory neuronal response to reduce ectopic or aberrant levels of neuronal activity produced by the injury.


Assuntos
Gânglios Espinais/fisiopatologia , Radiculopatia/fisiopatologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Gânglios Espinais/efeitos dos fármacos , Hiperalgesia/tratamento farmacológico , Hiperalgesia/fisiopatologia , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos , Dor/tratamento farmacológico , Dor/fisiopatologia , Técnicas de Patch-Clamp , Canais de Potássio de Abertura Dependente da Tensão da Membrana/efeitos dos fármacos , Canais de Potássio de Abertura Dependente da Tensão da Membrana/fisiologia , Radiculopatia/tratamento farmacológico , Canais de Sódio/efeitos dos fármacos , Canais de Sódio/fisiologia , Tetrodotoxina/farmacologia
16.
Exp Dermatol ; 20(10): 778-82, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21929688

RESUMO

In psychophysical experiments, humans use different verbal responses to pruritic and algesic chemical stimuli to indicate the different qualities of sensation they feel. A major challenge for behavioural models in the mouse of chemical itch and pain in humans is to devise experimental protocols that provide the opportunity for the animal to exhibit a multiplicity of responses as well. One basic criterion is that chemicals that evoke primarily itch or pain in humans should elicit different types of responses when applied in the same way to the mouse. Meeting this criterion is complicated by the fact that the type of behavioural responses exhibited by the mouse depends in part on the site of chemical application such as the nape of the neck that evokes only scratching with the hind paw versus the hind limb that elicits licking and biting. Here, we review to what extent mice behaviourally differentiate chemicals that elicit itch versus pain in humans.


Assuntos
Dor/fisiopatologia , Dor/psicologia , Prurido/fisiopatologia , Prurido/psicologia , Animais , Comportamento Animal , Modelos Animais de Doenças , Humanos , Irritantes/toxicidade , Camundongos , Dor/induzido quimicamente , Prurido/induzido quimicamente , Psicofísica , Especificidade da Espécie
17.
Brain Behav Immun ; 25(7): 1399-407, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21521651

RESUMO

Pain often accompanies antigen-specific immune-related disorders though little is known of the underlying neural mechanisms. A common feature among these disorders is the elevated level of antigen-specific immunoglobulin (Ig) G in the serum and the presence of IgG immune complex (IC) in the affected tissue. We hypothesize that IC may directly activate the Fc-gamma receptor type I (FcγRI) expressed in nociceptive dorsal root ganglion (DRG) neurons and increase neuronal excitability thus potentially contributing to pain. Immunofluorescent labeling indicated that FcγRI, but not FcγRIIB or FcγRIII, was expressed in a subpopulation of rat DRG neurons including those expressing nociceptive markers. Calcium imaging revealed that the IC, but neither of the antibody (IgG) or antigen alone, produced an increase in intracellular calcium. This effect was abolished by the removal of the IgG Fc portion in the IC or the application of an anti-FcγRI antibody, suggesting a key role of the FcγRI receptor. Removal of extracellular calcium or depletion of intracellular calcium stores prevented the IC-induced calcium response. In whole-cell current-clamp recordings, IC depolarized the resting membrane potential, decreased the rheobase, and increased the number of action potentials evoked by a depolarizing current at 2× rheobase. In about half of the responsive neurons, IC evoked action potential discharges. These results suggest that a subpopulation of nociceptive neurons expresses functional FcγRI and that the activation of this receptor by IC increases neuronal excitability.


Assuntos
Complexo Antígeno-Anticorpo/farmacologia , Gânglios Espinais/fisiologia , Imunoglobulina G/farmacologia , Neurônios/fisiologia , Receptores de IgG/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Cálcio/metabolismo , Células Cultivadas , Feminino , Gânglios Espinais/citologia , Gânglios Espinais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
19.
Elife ; 102021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33891544

RESUMO

In humans, intradermal administration of ß-alanine (ALA) and bovine adrenal medulla peptide 8-22 (BAM8-22) evokes the sensation of itch. Currently, it is unknown which human dorsal root ganglion (DRG) neurons express the receptors of these pruritogens, MRGPRD and MRGPRX1, respectively, and which cutaneous afferents these pruritogens activate in primate. In situ hybridization studies revealed that MRGPRD and MRGPRX1 are co-expressed in a subpopulation of TRPV1+ human DRG neurons. In electrophysiological recordings in nonhuman primates (Macaca nemestrina), subtypes of polymodal C-fiber nociceptors are preferentially activated by ALA and BAM8-22, with significant overlap. When pruritogens ALA, BAM8-22, and histamine, which activate different subclasses of C-fiber afferents, are administered in combination, human volunteers report itch and nociceptive sensations similar to those induced by a single pruritogen. Our results provide evidence for differences in pruriceptive processing between primates and rodents, and do not support the spatial contrast theory of coding of itch and pain.


Assuntos
Gânglios Espinais/fisiopatologia , Nociceptores/fisiologia , Fragmentos de Peptídeos/efeitos adversos , Prurido/fisiopatologia , Receptores Acoplados a Proteínas G/genética , beta-Alanina/efeitos adversos , Adulto , Animais , Feminino , Gânglios Espinais/efeitos dos fármacos , Histamina/administração & dosagem , Humanos , Macaca nemestrina/fisiologia , Masculino , Pessoa de Meia-Idade , Nociceptores/efeitos dos fármacos , Prurido/induzido quimicamente , Receptores Acoplados a Proteínas G/metabolismo , Adulto Jovem
20.
Mol Pain ; 6: 65, 2010 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-20923570

RESUMO

BACKGROUND: A chronic compressed dorsal root ganglion (CCD) in rat produces pain behavior and an enhanced excitability of neurons within the compressed ganglion. Kir2.1 is an inwardly rectifying potassium channel that acts to stabilize the resting potential of certain cell types. We hypothesized that an inducible expression of Kir2.1 channels in CCD neurons might suppress neuronal excitability in the dorsal root ganglion (DRG) and reduce the associated pain behavior. RESULTS: We delivered, by microinjection into the fourth lumbar (L4) DRG, an adenoviral vector containing a reporter gene encoding the enhanced green fluorescent protein (GFP) and a Kir2.1 channel (AdKir). At the same time the ganglion was compressed by implantation of a rod through the intervertebral foramen (CCD). The in vivo expression of the transferred gene was controlled by an ecdysone analog via an ecdysone-inducible promoter in the viral vector. In comparison with the effects of vehicle or a control vector containing only the GFP gene, AdKir significantly reduced the neuronal hyperexcitability after CCD. Electrophysiological recordings, in vivo, from nociceptive and non-nociceptive DRG neurons expressing the virally produced Kir2.1 channels revealed a hyperpolarized resting membrane potential, an increased rheobase, and lack of spontaneous activity. Inducing the Kir2.1 gene at the beginning of CCD surgery partially prevented the development of mechanical hyperalgesia. However, a delayed induction of the Kir2.1 gene (3 days after CCD surgery) produced no significant effect on the pain behavior. CONCLUSIONS: We found that an inducible expression of Kir2.1 channels in chronically compressed DRG neurons can effectively suppress the neuronal excitability and, if induced at the beginning of CCD injury, prevent the development of hyperalgesia. We hypothesize that a higher level of neuronal hyperexcitability in the DRG is required to initiate than to maintain the hyperalgesia and that the hyperexcitability contributing to neuropathic pain is best inhibited as soon as possible after injury.


Assuntos
Potenciais de Ação/fisiologia , Adenoviridae/genética , Gânglios Espinais/fisiopatologia , Vetores Genéticos/genética , Hiperalgesia/etiologia , Síndromes de Compressão Nervosa/fisiopatologia , Neurônios/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Animais , Comportamento Animal , Doença Crônica , Feminino , Regulação da Expressão Gênica , Terapia Genética , Hiperalgesia/fisiopatologia , Síndromes de Compressão Nervosa/complicações , Canais de Potássio Corretores do Fluxo de Internalização/genética , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA