Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Biomed Sci ; 29(1): 103, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36457117

RESUMO

BACKGROUND: Rab37-mediated exocytosis of tissue inhibitor of metalloproteinase 1 (TIMP1), an inflammatory cytokine, under serum-depleted conditions which leads to suppression of lung cancer cell metastasis has been reported. Starvation is also a stimulus of autophagic activity. Herein, we reveal that starvation activates Rab37 and induces autophagy. METHODS: We used an overexpression/knockdown system to determine the relationship between autophagy and Rab37 in vitro and in vivo. The autophagy activity was detected by immunoblotting, transmission electron microscope, autophagosome purification, and immunofluorescence under the confocal microscope. Lung-to-lung metastasis mouse model was used to clarify the role of autophagy and Rab37 in lung cancer. Clinical lung cancer patient specimens and an online big database were analyzed. RESULTS: Initially, we demonstrated that active-form Rab37 increased LC3-II protein level (the marker of autophagosome) and TIMP1 secretion. Accordingly, silencing of Rab37 gene expression alleviated Rab37 and LC3-II levels as well as TIMP1 secretion, and induction of autophagy could not increase TIMP1 exocytosis under such conditions. Moreover, silencing the Atg5 or Atg7 gene of lung cancer cells harboring active-mutant Rab37 (Q89L) led to decreased autophagy activity and TIMP1 secretion. In the lung-to-lung metastasis mouse model, increased TIMP1 expression accompanied by amiodarone-induced autophagy led to decreased tumor nodules and cancer cell metastasis. These phenomena were reversed by silencing the Atg5 or Atg7 gene. Notably, increasing autophagy activity alone showed no effect on TIMP1 secretion under either Rab37 or Sec22b silencing conditions. We further detected colocalization of LC3 with either Rab37 or TIMP1, identified Rab37 and Sec22b proteins in the purified autophagosomes of the lung cancer cells harboring the active-form Rab37 gene, and confirmed that these proteins are involved in the secretion of TIMP1. We reveal that autophagic activity was significantly lower in the tumors compared to the non-tumor parts and was associated with the overall lung cancer patient survival rate. CONCLUSIONS: We are the first to report that autophagy plays a promoting role in TIMP1 secretion and metastasis in a Rab37-dependent manner in lung cancer cells and the lung-to-lung mouse model.


Assuntos
Neoplasias Pulmonares , Inibidor Tecidual de Metaloproteinase-1 , Proteínas rab de Ligação ao GTP , Animais , Camundongos , Autofagossomos , Autofagia/genética , Modelos Animais de Doenças , Exocitose , Neoplasias Pulmonares/genética , Inibidor Tecidual de Metaloproteinase-1/genética , Proteínas rab de Ligação ao GTP/genética
2.
J Biomed Sci ; 27(1): 102, 2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33248456

RESUMO

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is widely prevalent in Taiwan, and high metastatic spread of ESCC leads to poor survival rate. Fibronectin (FN) assembly on the cell membrane may induce ESCC mobility. MicroRNAs (MiRNAs) are abundant in and participate in tumorigenesis in many cancers. However, the role of MiRNA in FN assembly-related ESCC mobility remains unexplored. METHODS: We divided ESCC CE81T cells into high-FN assembly (CE81FN+) and low-FN assembly (CE81FN-) groups by flow cytometry. MiRNA microarray analysis identified miR-146a expression as the most down-regulated miRNA in comparison of CE81FN+ and CE81FN- cells. RESULTS: Cell proliferation and migration were decreased when CE81FN+ cells overexpressed transgenic miR-146a compared to the parental cells, indicating an inverse correlation between low miR-146a expression and high proliferation as well as motility of FN assembly ESCC cells. Furthermore, vimentin is the target gene of miR-146a involved in ESCC tumorigenesis. MiR-146a suppressed cell proliferation, migration and invasion of CE81FN+ cells through the inhibition of vimentin expression, as confirmed by real-time PCR, Western blotting and Transwell™ assay. Analysis of one hundred and thirty-six paired ESCC patient specimens revealed that low miR-146a and high vimentin levels were frequently detected in tumor, and that the former was associated with late tumor stages (III and IV). Notably, either low miR-146a expression or high vimentin level was significantly associated with poor overall survival rate among ESCC patients. CONCLUSIONS: This is the first report to link FN assembly in the cell membrane with miR-146a, vimentin and ESCC tumorigenesis both in vitro and in ESCC patients.


Assuntos
Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/metabolismo , Fibronectinas/genética , MicroRNAs/genética , Vimentina/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Membrana Celular/fisiologia , Movimento Celular , Proliferação de Células , Neoplasias Esofágicas/etiologia , Carcinoma de Células Escamosas do Esôfago/etiologia , Feminino , Fibronectinas/metabolismo , Humanos , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Vimentina/metabolismo
3.
Hepatology ; 68(1): 141-154, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29328502

RESUMO

Dysfunction of degradation machineries causes cancers, including hepatocellular carcinoma (HCC). Overexpression of cyclin D1 in HCC has been reported. We previously reported that autophagy preferentially recruits and degrades the oncogenic microRNA (miR)-224 to prevent HCC. Therefore, in the present study, we attempted to clarify whether cyclin D1 is another oncogenic factor selectively regulated by autophagy in HCC tumorigenesis. Initially, we found an inverse correlation between low autophagic activity and high cyclin D1 expression in tumors of 147 HCC patients and three murine models, and these results taken together revealed a correlation with poor overall survival of HCC patients, indicating the importance of these two events in HCC development. We found that increased autophagic activity leads to cyclin D1 ubiquitination and selective recruitment to the autophagosome (AP) mediated by a specific receptor, sequestosome 1 (SQSTM1), followed by fusion with lysosome and degradation. Autophagy-selective degradation of ubiquitinated cyclin D1 through SQSTM1 was confirmed using cyclin D1/ubiquitin binding site (K33-238 R) and phosphorylation site (T286A) mutants, lentivirus-mediated silencing autophagy-related 5 (ATG5), autophagy-related 7 (ATG7), and Sqstm1 knockout cells. Functional studies revealed that autophagy-selective degradation of cyclin D1 plays suppressive roles in cell proliferation, colony, and liver tumor formation. Notably, an increase of autophagic activity by pharmacological inducers (amiodarone and rapamycin) significantly suppressed tumor growth in both the orthotopic liver tumor and subcutaneous tumor xenograft models. Our findings provide evidence of the underlying mechanism involved in the regulation of cyclin D1 by selective autophagy to prevent tumor formation. CONCLUSION: Taken together, our data demonstrate that autophagic degradation machinery and the cell-cycle regulator, cyclin D1, are linked to HCC tumorigenesis. We believe these findings may be of value in the development of alternative therapeutics for HCC patients. (Hepatology 2018;68:141-154).


Assuntos
Autofagia , Carcinoma Hepatocelular/metabolismo , Ciclina D1/metabolismo , Neoplasias Hepáticas/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Autofagossomos/metabolismo , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/mortalidade , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/mortalidade , Masculino , Camundongos SCID , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/metabolismo , Pessoa de Meia-Idade , Ratos Sprague-Dawley , Proteína Sequestossoma-1/metabolismo , Taiwan/epidemiologia , Ubiquitinação
4.
BMC Cancer ; 17(1): 277, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28420331

RESUMO

BACKGROUND: Arsenic is a widely distributed metalloid compound that has biphasic effects on cultured cells. In large doses, arsenic can be toxic enough to trigger cell death. In smaller amounts, non-toxic doses may promote cell proliferation and induces carcinogenesis. Aberration of chromosome is frequently detected in epithelial cells and lymphocytes of individuals from arsenic contaminated areas. Overexpression of Aurora-A, a mitotic kinase, results in chromosomal instability and cell transformation. We have reported that low concentration (≦1 µM) of arsenic treatment increases Aurora-A expression in immortalized bladder urothelial E7 cells. However, how arsenic induces carcinogenesis through Aurora-A activation remaining unclear. METHODS: Bromodeoxyuridine (BrdU) staining, MTT assay, and flow cytometry assay were conducted to determine cell proliferation. Messenger RNA and protein expression levels of Aurora-A were detected by reverse transcriptional-PCR and Western blotting, respectively. Centrosome of cells was observed by immunofluorescent staining. The transcription factor of Aurora-A was investigated by promoter activity, chromosome immunoprecipitation (ChIP), and small interfering RNA (shRNA) assays. Mouse model was utilized to confirm the relationship between arsenic and Aurora-A. RESULTS: We reveal that low dosage of arsenic treatment increased cell proliferation is associated with accumulated cell population at S phase. We also detected increased Aurora-A expression at mRNA and protein levels in immortalized bladder urothelial E7 cells exposed to low doses of arsenic. Arsenic-treated cells displayed increased multiple centrosome which is resulted from overexpressed Aurora-A. Furthermore, the transcription factor, E2F1, is responsible for Aurora-A overexpression after arsenic treatment. We further disclosed that Aurora-A expression and cell proliferation were increased in bladder and uterus tissues of the BALB/c mice after long-term arsenic (1 mg/L) exposure for 2 months. CONCLUSION: We reveal that low dose of arsenic induced cell proliferation is through Aurora-A overexpression, which is transcriptionally regulated by E2F1 both in vitro and in vivo. Our findings disclose a new possibility that arsenic at low concentration activates Aurora-A to induce carcinogenesis.


Assuntos
Arsênio/toxicidade , Aurora Quinase A/biossíntese , Carcinoma de Células de Transição/enzimologia , Fator de Transcrição E2F1/metabolismo , Neoplasias da Bexiga Urinária/enzimologia , Animais , Western Blotting , Carcinogênese/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Imunoprecipitação da Cromatina , Citometria de Fluxo , Imunofluorescência , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos BALB C , Reação em Cadeia da Polimerase Via Transcriptase Reversa
5.
J Cell Physiol ; 230(4): 930-46, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25216025

RESUMO

Our previous reports showed that justicidin A (JA), a novel and pure arylnaphthalide lignan isolated from Justicia procumbens, induces apoptosis of human colorectal cancer cells and hepatocellular carcinoma cells, leading to the suppression of both tumor cell growth in NOD-SCID mice. Here, we reveal that JA induces autophagy in human colorectal cancer HT-29 cells by conversion of autophagic marker LC3-I to LC3-II. Furthermore, LC3 puncta and autophagic vesicle formation, and SQSTM1/p62 suppression were observed. Administration of autophagy inhibitor (bafilomycin A1 and chloroquine) and transfection of a tandem fluorescent-tagged LC3 (mRFP-GFP) reporter plasmid (ptfLC3) demonstrated that JA induces autophagy flux in HT-29 cells. Expression of LC3, SQSTM1, Beclin 1, and nuclear DNA double-strand breaks (representing apoptosis) were also detected in the tumor tissue of HT-29 cells transplanted into NOD-SCID mice orally administrated with JA. In addition, the expression of autophagy signaling pathway-related molecules p-PDK1, p-mTOR, p-p70S6k/p-RPS6KB2 was decreased, whereas that of class III PI3K, Beclin 1, Atg5-Atg12, and mitochondrial BNIP3 was increased in response to JA. Pre-treatment of the cells with class III PI3K inhibitor 3-methyladenine or Atg5 shRNA attenuated JA-induced LC3-II expression and LC3 puncta formation, indicating the involvement of class III PI3K and Atg5. A novel mechanism was demonstrated in the anticancer compound JA; pre-treatment with 3-methyladenine or Atg5 shRNA blocked JA-induced suppression in cell growth and colony formation, respectively, via inhibition of apoptosis. In contrast, administration of apoptosis inhibitor Z-VAD did not affect JA-induced autophagy. Our data suggest the chemotherapeutic potential of JA for treatment of human colorectal cancer.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Dioxolanos/farmacologia , Lignanas/farmacologia , Proteínas Associadas aos Microtúbulos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Proteína 5 Relacionada à Autofagia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Células HT29 , Humanos , Camundongos , Camundongos SCID , RNA Interferente Pequeno/metabolismo
6.
Hepatology ; 59(2): 505-17, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23913306

RESUMO

UNLABELLED: In hepatocellular carcinoma (HCC), dysregulated expression of microRNA-224 (miR-224) and impaired autophagy have been reported separately. However, the relationship between them has not been explored. In this study we determined that autophagy is down-regulated and inversely correlated with miR-224 expression in hepatitis B virus (HBV)-associated HCC patient specimens. These results were confirmed in liver tumors of HBV X gene transgenic mice. Furthermore, miR-224 was preferentially recruited and degraded during autophagic progression demonstrated by real-time polymerase chain reaction and miRNA in situ hybridization electron microscopy after extraction of autophagosomes. Our in vitro study demonstrated that miR-224 played an oncogenic role in hepatoma cell migration and tumor formation through silencing its target gene Smad4. In HCC patients, the expression of low-Atg5, high-miR-224, and low-Smad4 showed significant correlation with HBV infection and a poor overall survival rate. Autophagy-mediated miR-224 degradation and liver tumor suppression were further confirmed by the autophagy inducer amiodarone and miR-224 antagonist using an orthotopic SD rat model. CONCLUSION: A noncanonical pathway links autophagy, miR-224, Smad4, and HBV-associated HCC. These findings open a new avenue for the treatment of HCC.


Assuntos
Autofagia/fisiologia , Carcinogênese/metabolismo , Carcinoma Hepatocelular/metabolismo , Vírus da Hepatite B/fisiologia , Neoplasias Hepáticas/metabolismo , MicroRNAs/metabolismo , Amiodarona/farmacologia , Animais , Autofagia/efeitos dos fármacos , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/virologia , Modelos Animais de Doenças , Regulação para Baixo , Hepatite B/complicações , Humanos , Técnicas In Vitro , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/genética , Microscopia Eletrônica , Ratos , Ratos Sprague-Dawley , Proteína Smad4/metabolismo
7.
BMC Cancer ; 15: 172, 2015 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-25885317

RESUMO

BACKGROUND: Mutant Ras plays multiple functions in tumorigenesis including tumor formation and metastasis. Reversion-inducing cysteine-rich protein with Kazal motifs (RECK), a metastasis inhibitor gene, suppresses matrix metalloproteinase (MMP) activity in the metastatic cascade. Clarifying the relationship between Ras and RECK and understanding the underlying molecular mechanism may lead to the development of better treatment for Ras-related tumors. METHODS: Suppression subtractive hybridization PCR (SSH PCR) was conducted to identify Ha-ras (val12) up-regulated genes in bladder cancer cells. Stable cell lines of human breast cancer (MCF-7-ras) and mouse NIH3T3 fibroblasts (7-4) harboring the inducible Ha-ras (val12) oncogene, which could be induced by isopropylthio-ß-D-galactoside (IPTG), were used to clarify the relationship between Ras and the up-regulated genes. Chromatin immunoprecipitation (ChIP) assay, DNA affinity precipitation assay (DAPA) and RECK reporter gene assay were utilized to confirm the complex formation and binding with promoters. RESULTS: Retinoblastoma binding protein-7 (RbAp46) was identified and confirmed as a Ha-ras (val12) up-regulated gene. RbAp46 could bind with histone deacetylase (HDAC1) and Sp1, followed by binding to RECK promoter at the Sp1 site resulting in repression of RECK expression. High expression of Ras protein accompanied with high RbAp46 and low RECK expression were detected in 75% (3/4) of the clinical bladder cancer tumor tissues compared to the adjacent normal parts. Ras induced RbAp46 expression increases invasion of the bladder cancer T24 cells and MMP-9 activity was increased, which was confirmed by specific lentiviral shRNAs inhibitors against Ras and RbAp46. Similarly, knockdown of RbAp46 expression in the stable NIH3T3 cells "7-4" by shRNA decreased Ras-related lung metastasis using a xenograft nude mice model. CONCLUSIONS: We confirmed that RbAp46 is a Ha-ras (val12) up-regulated gene and binds with HDAC1 and Sp1. Furthermore, RbAp46 binds to the RECK promoter at the Sp1 site via recruitment by Sp1. RECK is subsequently activated, leading to increased MMP9 activity, which may lead to increased metastasis in vivo. Our findings of Ras upregulation of RbAp46 may lead to revealing a novel mechanism of Ras-related tumor cell metastasis.


Assuntos
Proteínas Ligadas por GPI/metabolismo , Genes ras , Neoplasias Pulmonares/metabolismo , Regiões Promotoras Genéticas , Proteína 7 de Ligação ao Retinoblastoma/biossíntese , Regulação para Cima , Animais , Feminino , Proteínas Ligadas por GPI/antagonistas & inibidores , Genes ras/fisiologia , Humanos , Neoplasias Pulmonares/patologia , Células MCF-7 , Camundongos , Camundongos Nus , Células NIH 3T3 , Regiões Promotoras Genéticas/fisiologia , Regulação para Cima/fisiologia , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/secundário
8.
Autophagy ; 20(6): 1444-1446, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38294001

RESUMO

Macroautophagy/autophagy acts as an anti-tumor mechanism in early cancer stages but promotes growth in established tumors. Similarly, miRNAs function as tumor suppressors or oncogenes, depending on their target genes. This reciprocal relationship between autophagy and miRNAs is a well-studied area, primarily focused on how miRNAs regulate autophagy-related genes. Our research provides innovative insights into how autophagy selectively controls miRNAs. For instance, MIR224 is preferentially degraded within autophagosomes, leading to the upregulation of SMAD4 and suppressing hepatocellular carcinoma (HCC) tumorigenesis. Conversely, autophagy positively regulates MIR449A by degrading EP300/p300 to activate FOXO1 and facilitate MIR449A transcription in colorectal cancer (CRC). In conclusion, our findings reveal the role of autophagy in maintaining the cellular balance of two miRNAs to mitigate tumorigenic stresses and highlight that autophagy-regulated miRNA profiles may serve as diagnostic and therapeutic markers for cancer development.


Assuntos
Autofagia , Homeostase , MicroRNAs , Neoplasias , Autofagia/genética , Autofagia/fisiologia , MicroRNAs/metabolismo , MicroRNAs/genética , Humanos , Neoplasias/genética , Neoplasias/patologia , Neoplasias/metabolismo , Animais , Carcinogênese/genética , Carcinogênese/patologia , Regulação Neoplásica da Expressão Gênica
9.
Kaohsiung J Med Sci ; 40(7): 631-641, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38826147

RESUMO

Autophagy is a self-recycling machinery to maintain cellular homeostasis by degrading harmful materials in the cell. Autophagy-related gene 5 (Atg5) is required for autophagosome maturation. However, the role of Atg5 in tumorigenesis under autophagy deficient conditions remains unclear. This study focused on the autophagy-independent role of Atg5 and the underlying mechanism in tumorigenesis. We demonstrated that knockout of autophagy-related genes including Atg5, Atg7, Atg9, and p62 in mouse embryonic fibroblast (MEF) cells consistently decreased cell proliferation and motility, implying that autophagy is required to maintain diverse cellular functions. An Atg7 knockout MEF (Atg7-/- MEF) cell line representing deprivation of autophagy function was used to clarify the role of Atg5 transgene in tumorigenesis. We found that Atg5-overexpressed Atg7-/-MEF (clone A) showed increased cell proliferation, colony formation, and migration under autophagy deficient conditions. Accordingly, rescuing the autophagy deficiency of clone A by overexpression of Atg7 gene shifts the role of Atg5 from pro-tumor to anti-tumor status, indicating the dual role of Atg5 in tumorigenesis. Notably, the xenograft mouse model showed that clone A of Atg5-overexpressed Atg7-/- MEF cells induced temporal tumor formation, but could not prolong further tumor growth. Finally, biomechanical analysis disclosed increased Wnt5a secretion and p-JNK expression along with decreased ß-catenin expression. In summary, Atg5 functions as a tumor suppressor to protect the cell under normal conditions. In contrast, Atg5 shifts to a pro-tumor status under autophagy deprivation conditions.


Assuntos
Proteína 5 Relacionada à Autofagia , Proteína 7 Relacionada à Autofagia , Autofagia , Carcinogênese , Proliferação de Células , Animais , Autofagia/genética , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Camundongos , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Carcinogênese/genética , Carcinogênese/patologia , Movimento Celular/genética , Humanos , Fibroblastos/metabolismo , Camundongos Knockout
10.
Kaohsiung J Med Sci ; 40(7): 642-649, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38804615

RESUMO

Autophagy can be classified as degradative and secretory based on distinct functions. The small GTPase proteins Rab8a and Rab37 are responsible for secretory autophagy-mediated exocytosis of IL-1ß, insulin, and TIMP1 (tissue inhibitor of 54 metalloproteinase 1). Other Rab family members participating in secretory autophagy are poorly understood. Herein, we identified 26 overlapped Rab proteins in purified autophagosomes of mouse pancreatic ß-cell "Min-6" and human lung cancer cell "CL1-5-Q89L" with high secretory autophagy tendency by LC-MS/MS proteomics analysis. Six Rab proteins (Rab8a, Rab11b, Rab27a, Rab35, Rab37, and Rab7a) were detected in autophagosomes of four cell lines, associating them with autophagy-related vesicle trafficking. We used CL1-5-Q89L cell line model to evaluate the levels of Rab proteins colocalization with autophagy LC3 proteins and presence in purified autophagosomes. We found five Rab proteins (Rab8a, Rab11b, Rab27a, Rab35, and Rab37) are highly expressed in the autophagosome compared to the normal control by immunoblotting under active secretion conditions. However, only Rab8a, Rab35, and Rab37 showing high colocalization with LC3 protein by cofocal microscopy. Despite the discrepancy between the image and immunoblotting analysis, our data sustains the speculation that Rab8a, Rab11b, Rab27a, Rab35, and Rab37 are possibly associated with the secretory autophagy machinery. In contrast, Rab7a shows low colocalization with LC3 puncta and low level in the autophagosome, suggesting it regulates different vesicle trafficking machineries. Our findings open a new direction toward exploring the role of Rab proteins in secretory autophagy-related cargo exocytosis and identifying the cargoes and effectors regulated by specific Rab proteins.


Assuntos
Autofagossomos , Autofagia , Proteínas rab de Ligação ao GTP , Proteínas rab de Ligação ao GTP/metabolismo , Autofagia/fisiologia , Humanos , Animais , Camundongos , Autofagossomos/metabolismo , Linhagem Celular Tumoral , Proteínas Associadas aos Microtúbulos/metabolismo , Proteômica/métodos , Espectrometria de Massas em Tandem
11.
Autophagy ; : 1-2, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37151129

RESUMO

RAB37 GTPase regulates cargo exocytosis by cycling between an inactive GDP-bound form and an active GTP-bound form. We reveal that RAB37 simultaneously regulates autophagy activation and tissue inhibitor of metalloproteinase 1 (TIMP1) secretion in lung cancer cells under starvation conditions. TIMP1, an inflammatory cytokine, is a known inhibitory molecule of matrix metalloproteinases matrix metalloproteinase 9 and suppresses the mobility of lung cancer cells both in vitro and in vivo through conventional exocytosis under serum-free conditions. Notably, we disclosed that secretory autophagy participates in TIMP1 secretion in a RAB37- and Sec22b-dependent manner. Sec22b, a SNARE family protein, participates in vesicle and membrane fusion of secretory autophagy. Knockdown of Sec22b decreased TIMP1 secretion and cell motility but did not affect cell proliferation under starvation conditions. We confirmed that starvation-activated RAB37 accompanied by Sec22b is essential for secretory autophagy to further enhance TIMP1 exocytosis. We further use an off-label drug amiodarone to demonstrate that autophagy induction facilitates TIMP1 secretion and suppresses the motility and metastasis of lung cancer cells in a RAB37-dependent manner in the lung-to-lung mouse model. In conclusion, we demonstrated that the RAB37 activation plays a pivotal regulatory role in secretory autophagy for TIMP1 secretion in lung cancer.Abbreviations: ATG: autophagy-related gene; GDP: guanosine diphosphate; GTP: guanosine triphosphate; LC3: microtubule-associated protein 1A/1B-light chain 3; SNARE: soluble N-ethylmaleimide-sensitive-factor attachment protein receptor; TIMP1: tissue inhibitor matrix metalloproteinase 1.

12.
Kaohsiung J Med Sci ; 39(5): 489-500, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36866653

RESUMO

Formosanin C (FC) is a natural compound extracted from Paris formosana Hayata with anticancer activity. FC induces both autophagy and apoptosis in human lung cancer cells. FC-induced depolarization of mitochondrial membrane potential (MMP) may trigger mitophagy. In this study, we clarified the effect of FC on autophagy, mitophagy, and the role of autophagy in FC-related cell death and motility. We found FC caused the continuous increase of LC3 II (representing autophagosomes) from 24 to 72 h without degradation after treatment of lung and colon cancer cells, indicating that FC blocks autophagic progression. In addition, we confirmed that FC also induces early stage autophagic activity. Altogether, FC is not only an inducer but also a blocker of autophagy progression. Moreover, FC increased MMP accompanied by overexpression of COX IV (mitochondria marker) and phosphorylated Parkin (p-Parkin, mitophagy marker) in lung cancer cells, but no colocalization of LC3 with COX IV or p-Parkin was detected under confocal microscopy. Moreover, FC could not block CCCP (mitophagy inducer)-induced mitophagy. These results imply that FC disrupts mitochondria dynamics in the treated cells, and the underlying mechanism deserves further exploration. Functional analysis reveals that FC suppresses cell proliferation and motility through apoptosis and EMT-related pathway, respectively. In conclusion, FC acts as an inducer as well as a blocker of autophagy that results in cancer cell apoptosis and decreased motility. Our findings shed the light on the development of combined therapy with FC and clinical anticancer drugs for cancer treatment.


Assuntos
Autofagia , Neoplasias Pulmonares , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Proliferação de Células
13.
J Nutr Biochem ; 121: 109438, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37666476

RESUMO

Combination therapies to induce mixed-type cell death and synthetic lethality have the potential to overcome drug resistance in cancer. In this study, we demonstrated that the curcumin-enhanced cytotoxicity of cisplatin/carboplatin in combination with gemcitabine was associated with Aurora A suppression-mediated G2/M arrest, and thus apoptosis, as well as MEK/ERK-mediated autophagy in human bladder cancer cells. Animal study data confirmed that curcumin combined with cisplatin/gemcitabine reduced tumorigenesis of xenograft in mice and this phenomenon was associated with elevated expressions of p-ERK and reduced p-Aurora A in tumors. Gene analyses using data repositories further revealed that reduced Aurora A expression alone did not significantly elevate the sensitivity of human bladder carcinoma cells to these anticancer drugs. Unlike other major cancer types, human bladder urothelial carcinoma tissue coexpressed higher AURKA and lower MAP1LC3B than normal tissue, and reduced Aurora A and induction of autophagy have been clinically associated with a better prognosis in patients with early but not advanced stage bladder cancer. Therefore, our results suggest that treatment strategies can utilize the synthetic lethal pair to concurrently suppress oncogenic Aurora A and induce autophagy by coadministrating curcumin with anticancer drugs for early-stage bladder cancer with high expression of Aurora A.

14.
Autophagy ; 19(4): 1239-1257, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36109708

RESUMO

High blood glucose is one of the risk factors for metabolic disease and INS (insulin) is the key regulatory hormone for glucose homeostasis. Hypoinsulinemia accompanied with hyperglycemia was diagnosed in mice with pancreatic ß-cells exhibiting autophagy deficiency; however, the underlying mechanism remains elusive. The role of secretory autophagy in the regulation of metabolic syndrome is gaining more attention. Our data demonstrated that increased macroautophagic/autophagic activity leads to induction of insulin secretion in ß-cells both in vivo and in vitro under high-glucose conditions. Moreover, proteomic analysis of purified autophagosomes from ß-cells identified a group of vesicular transport proteins participating in insulin secretion, implying that secretory autophagy regulates insulin exocytosis. RAB37, a small GTPase, regulates vesicle biogenesis, trafficking, and cargo release. We demonstrated that the active form of RAB37 increased MAP1LC3/LC3 lipidation (LC3-II) and is essential for the promotion of insulin secretion by autophagy, but these phenomena were not observed in rab37 knockout (rab37-/-) cells and mice. Unbalanced insulin and glucose concentration in the blood was improved by manipulating autophagic activity using a novel autophagy inducer niclosamide (an antihelminthic drug) in a high-fat diet (HFD)-obesity mouse model. In summary, we reveal that secretory autophagy promotes RAB37-mediated insulin secretion to maintain the homeostasis of insulin and glucose both in vitro and in vivo.


Assuntos
Hiperglicemia , Células Secretoras de Insulina , Animais , Camundongos , Autofagia/fisiologia , Glucose/metabolismo , Secreção de Insulina , Proteômica , Proteínas rab de Ligação ao GTP/metabolismo , Insulina/metabolismo , Hiperglicemia/metabolismo , Células Secretoras de Insulina/metabolismo
15.
Environ Toxicol ; 27(6): 332-41, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-20925121

RESUMO

Although there have been advances in the fields of surgery, radiotherapy, and chemotherapy of tongue cancer, the cure rates are still not substantially satisfactory. Capsaicin (trans-8-methyl-N-vanillyl-6-nonenamide) is the major pungent ingredient of hot chili pepper and has been reported to have an antitumor effect on many human cancer cell types. The molecular mechanisms of the antitumor effect of capsaicin are not yet completely understood. Herein, we investigated whether capsaicin induces apoptosis in human tongue cancer cells. Capsaicin decreased the percentage of viable cells in a dose-dependent manner in human tongue cancer SCC-4 cells. In addition, capsaicin produced DNA fragmentation, decreased the DNA contents (sub-G1 phase), and induced G0/G1 phase arrest in SCC-4 cells. We demonstrated that capsaicin-induced apoptosis is associated with an increase in reactive oxygen species and Ca²âº generations and a disruption of the mitochondrial transmenbrane potential (ΔΨ(m)). Treatment with capsaicin induced a dramatic increase in caspase-3 and -9 activities, as assessed by flow cytometric methods. A possible mechanism of capsaicin-induced apoptosis is involved in the activation of caspase-3 (one of the apoptosis-executing enzyme). Confocal laser microscope examination also showed that capsaicin induced the releases of AIF, ATF-4, and GADD153 from mitochondria of SCC-4 cells.


Assuntos
Apoptose/efeitos dos fármacos , Capsaicina/farmacologia , Estresse do Retículo Endoplasmático , Mitocôndrias/metabolismo , Neoplasias da Língua/tratamento farmacológico , Cálcio/metabolismo , Capsaicina/uso terapêutico , Caspase 3/metabolismo , Ciclo Celular , Linhagem Celular Tumoral , Fragmentação do DNA/efeitos dos fármacos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Células Tumorais Cultivadas
16.
Front Oncol ; 11: 738144, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34737955

RESUMO

Many studies reported that microRNAs (miRNAs) target autophagy-related genes to affect carcinogenesis, however, autophagy-deficiency-related miRNA dysfunction in cancer development remains poorly explored. During autophagic progression, we identified miR-449a as the most up-regulated miRNA. MiR-449a expression was low in the tumor parts of CRC patient specimens and inversely correlated with tumor stage and metastasis with the AUC (area under the curve) of 0.899 and 0.736 as well as poor overall survival rate, indicating that miR-449a has the potential to be a prognostic biomarker. In the same group of CRC specimens, low autophagic activity (low Beclin 1 expression and high p62 accumulation) was detected, which was significantly associated with miR-449a expression. Mechanistic studies disclosed that autophagy upregulates miR-449a expression through degradation of the coactivator p300 protein which acetylates the transcription factor Forkhead Box O1 (FoxO1). Unacetylated FoxO1 translocated to the nucleus and bound to the miR-449a promoter to drive gene expression. Either activation of autophagy by the inducer or overexpression of exogenous miR-449a decreases the expression of target gene LEF-1 and cyclin D1, which lead to decreased proliferation, colony formation, migration, and invasion of CRC cells. Autophagy-miR-449a-tartet genes mediated suppression of tumor formation was further confirmed in the xenograft mouse model. In conclusion, this study reveals a novel mechanism wherein autophagy utilizes miR-449a-LEF1-cyclin D1 axis to suppress CRC tumorigenesis. Our findings open a new avenue toward prognosis and treatment of CRC patients by manipulating autophagy-miR-449a axis.

17.
Viruses ; 13(10)2021 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-34696464

RESUMO

Autophagic machinery is involved in selective and non-selective recruitment as well as degradation or exocytosis of cargoes, including pathogens. Dengue virus (DENV) infectioninduces autophagy that enhances virus replication and vesicle release to evade immune systemsurveillance. This study reveals that DENV2 induces autophagy in lung and liver cancer cells andshowed that DENV2 capsid, envelope, NS1, NS3, NS4B and host cell proinflammatory high mobilitygroup box 1 (HMGB1) proteins associated with autophagosomes which were purified by gradientcentrifugation. Capsid, NS1 and NS3 proteins showing high colocalization with LC3 protein in thecytoplasm of the infected cells were detected in the purified double-membrane autophagosome byimmunogold labeling under transmission electron microscopy. In DENV infected cells, the levels ofcapsid, envelope, NS1 and HMGB1 proteins are not significantly changed compared to the dramaticaccumulation of LC3-II and p62/SQSTM1 proteins when autophagic degradation was blocked bychloroquine, indicating that these proteins are not regulated by autophagic degradation machinery.We further demonstrated that purified autophagosomes were infectious when co-cultured withuninfected cells. Notably, these infectious autophagosomes contain DENV2 proteins, negativestrandand full-length genomic RNAs, but no viral particles. It is possible that the infectivity ofthe autophagosome originates from the full-length DENV RNA. Moreover, we reveal that DENV2promotes HMGB1 exocytosis partially through secretory autophagy. In conclusion, we are the firstto report that DENV2-induced double-membrane autophagosomes containing viral proteins andfull-length RNAs are infectious and not undergoing autophagic degradation. Our novel findingwarrants further validation of whether these intracellular vesicles undergo exocytosis to becomeinfectious autophagic vesicles.


Assuntos
Autofagossomos/genética , Autofagossomos/metabolismo , Vírus da Dengue/genética , Células A549 , Animais , Autofagossomos/virologia , Autofagia/genética , Linhagem Celular Tumoral , Chlorocebus aethiops , Dengue/virologia , Genômica , Proteína HMGB1 , Humanos , Neoplasias Hepáticas , RNA/metabolismo , Células Vero , Vírion , Replicação Viral
18.
Cancers (Basel) ; 12(10)2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33036162

RESUMO

Analysis of various public databases revealed that HRAS gene mutation frequency and mRNA expression are higher in bladder urothelial carcinoma. Further analysis revealed the roles of oncogenic HRAS, autophagy, and cell senescence signaling in bladder cancer cells sensitized to the anticancer drug cisplatin using the phytochemical pterostilbene. A T24 cell line with the oncogenic HRAS was chosen for further experiments. Indeed, coadministration of pterostilbene increased stronger cytotoxicity on T24 cells compared to HRAS wild-type E7 cells, which was paralleled by neither elevated apoptosis nor induced cell cycle arrest, but rather a marked elevation of autophagy and cell senescence in T24 cells. Pterostilbene-induced autophagy in T24 cells was paralleled by inhibition of class I PI3K/mTOR/p70S6K as well as activation of MEK/ERK (a RAS target) and class III PI3K pathways. Pterostilbene-induced cell senescence on T24 cells was paralleled by increased pan-RAS and decreased phospho-RB expression. Coadministration of PI3K class III inhibitor 3-methyladenine or MEK inhibitor U0126 suppressed pterostilbene-induced autophagy and reversed pterostilbene-enhanced cytotoxicity, but did not affect pterostilbene-elevated cell senescence in T24 cells. Animal study data confirmed that pterostilbene enhanced cytotoxicity of cisplatin plus gemcitabine. These results suggest a therapeutic application of pterostilbene in cisplatin-resistant bladder cancer with oncogenic HRAS.

19.
Autophagy ; 15(4): 729-730, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30646811

RESUMO

Overexpressed CCND1 (cyclin D1) is associated with hepatocellular carcinoma (HCC) and we used 147 tumor tissue samples from HCC patients and 3 murine models to reveal an inverse correlation between low autophagic activity and high CCND1 expression. These 2 phenomena in combination correlated with poor overall survival in HCC patients. Mechanistic analysis showed that activated autophagy triggered CCND1 ubiquitination followed by SQSTM1 (sequestosome 1)-mediated selective phagophore recruitment, autophagosome formation, fusion with a lysosome, and degradation. Functional studies revealed that autophagy-selective degradation of CCND1 suppresses DNA synthesis, cell proliferation, and colony, and liver tumor formation by arresting the cell cycle at the G1 phase. Most importantly, diverse pharmacological inducers (rapamycin and amiodarone) effectively suppress tumor growth in orthotopic liver tumor and subcutaneous tumor xenograft models. In conclusion, we have demonstrated a link between degradative autophagy and the cell cycle regulator CCND1, and have discovered the underlying mechanism by which the autophagic degradation machinery regulates the turnover of the cell-cycle regulator CCND1, which in turn affects HCC tumorigenesis. Abbreviations: CCDN1: cyclin D1; HBV: hepatitis B virus; HCC: hepatocellular carcinoma; HCV: hepatitis C virus; SQSTM1: sequestosome 1.


Assuntos
Autofagia , Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Animais , Carcinogênese , Ciclina D1 , Humanos , Camundongos
20.
EBioMedicine ; 43: 270-281, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30982765

RESUMO

BACKGROUND: In our preliminary screening, expression of miR-338-5p was found to be higher in primary colorectal cancer (CRC) with metastasis. The autophagy related gene- phosphatidylinositol 3-kinase, catalytic subunit type 3 (PIK3C3) appeared to be targeted by miR-338-5p. Here, we provide solid evidence in support of PIK3C3 involved in miR-338-5p related metastasis of CRC in vitro and in vivo. METHODS: The potential clinical relevance of miR-338-5p and its target gene was analysed on benign colorectal polyps and primary CRCs by QPCR. Mouse spleen xenograft experiment was performed to examine the importance of miR-338-5p for metastasis. FINDINGS: PIK3C3 was one of target genes of miR-338-5p. In primary CRCs, expression of miR-338-5p is positively related to tumour staging, distant metastasis and poor patient survival. Patients with higher ratios of miR-338-5p/PIK3C3 also had significantly poor overall survival, supporting their significance in the progression of CRC. Over-expression of miR-338-5p promotes CRC metastasis to the liver and lung in vivo, in which PIK3C3 was down-regulated in the metastatic tumours. In contrast, overexpression of PIK3C3 in miR-338-5p stable cells inhibited the growth of metastatic tumours. Both migration and invasion of CRC in vitro induced by miR-338-5p are mediated by suppression of PIK3C3. Using forward and reverse approaches, autophagy was proved to involve in CRC migration and invasion induced by miR-338-5p. INTERPRETATION: MiR-338-5p induces migration, invasion and metastasis of CRC in part through PIK3C3-related autophagy pathway. The miR-338-5p/PIK3C3 ratio may become a prognostic biomarker for CRC patients. FUND: NCKU Hospital, Taiwan, Ministry of Science and Technology, Taiwan.


Assuntos
Autofagia/genética , Classe I de Fosfatidilinositol 3-Quinases/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Interferência de RNA , Regiões 3' não Traduzidas , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Humanos , Camundongos , Metástase Neoplásica , Estadiamento de Neoplasias , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA