Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 171(5): 987-989, 2017 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-29149612

RESUMO

In this issue of Cell, Martincorena et al. and Campbell et al. interrogated the selection dynamics during tumor evolution using large-scale genomics datasets. They found that somatic mutations in cancer are largely neutral, highlighting a near-complete absence of negative selection. Neutral evolution enables tolerance of hypermutation, which defines a surprisingly large fraction of adult cancer.


Assuntos
Neoplasias , Adulto , Genômica , Humanos
2.
Nature ; 629(8014): 1149-1157, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38720070

RESUMO

In somatic tissue differentiation, chromatin accessibility changes govern priming and precursor commitment towards cellular fates1-3. Therefore, somatic mutations are likely to alter chromatin accessibility patterns, as they disrupt differentiation topologies leading to abnormal clonal outgrowth. However, defining the impact of somatic mutations on the epigenome in human samples is challenging due to admixed mutated and wild-type cells. Here, to chart how somatic mutations disrupt epigenetic landscapes in human clonal outgrowths, we developed genotyping of targeted loci with single-cell chromatin accessibility (GoT-ChA). This high-throughput platform links genotypes to chromatin accessibility at single-cell resolution across thousands of cells within a single assay. We applied GoT-ChA to CD34+ cells from patients with myeloproliferative neoplasms with JAK2V617F-mutated haematopoiesis. Differential accessibility analysis between wild-type and JAK2V617F-mutant progenitors revealed both cell-intrinsic and cell-state-specific shifts within mutant haematopoietic precursors, including cell-intrinsic pro-inflammatory signatures in haematopoietic stem cells, and a distinct profibrotic inflammatory chromatin landscape in megakaryocytic progenitors. Integration of mitochondrial genome profiling and cell-surface protein expression measurement allowed expansion of genotyping onto DOGMA-seq through imputation, enabling single-cell capture of genotypes, chromatin accessibility, RNA expression and cell-surface protein expression. Collectively, we show that the JAK2V617F mutation leads to epigenetic rewiring in a cell-intrinsic and cell type-specific manner, influencing inflammation states and differentiation trajectories. We envision that GoT-ChA will empower broad future investigations of the critical link between somatic mutations and epigenetic alterations across clonal populations in malignant and non-malignant contexts.


Assuntos
Cromatina , Epigênese Genética , Genótipo , Mutação , Análise de Célula Única , Animais , Feminino , Humanos , Masculino , Camundongos , Antígenos CD34/metabolismo , Diferenciação Celular/genética , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Epigênese Genética/genética , Epigenoma/genética , Genoma Mitocondrial/genética , Técnicas de Genotipagem , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Inflamação/genética , Inflamação/patologia , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Megacariócitos/metabolismo , Megacariócitos/patologia , Proteínas de Membrana/genética , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/metabolismo , Transtornos Mieloproliferativos/patologia , RNA/genética , Células Clonais/metabolismo
3.
Nature ; 619(7968): 176-183, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37286593

RESUMO

Chromosomal instability (CIN) and epigenetic alterations are characteristics of advanced and metastatic cancers1-4, but whether they are mechanistically linked is unknown. Here we show that missegregation of mitotic chromosomes, their sequestration in micronuclei5,6 and subsequent rupture of the micronuclear envelope7 profoundly disrupt normal histone post-translational modifications (PTMs), a phenomenon conserved across humans and mice, as well as in cancer and non-transformed cells. Some of the changes in histone PTMs occur because of the rupture of the micronuclear envelope, whereas others are inherited from mitotic abnormalities before the micronucleus is formed. Using orthogonal approaches, we demonstrate that micronuclei exhibit extensive differences in chromatin accessibility, with a strong positional bias between promoters and distal or intergenic regions, in line with observed redistributions of histone PTMs. Inducing CIN causes widespread epigenetic dysregulation, and chromosomes that transit in micronuclei experience heritable abnormalities in their accessibility long after they have been reincorporated into the primary nucleus. Thus, as well as altering genomic copy number, CIN promotes epigenetic reprogramming and heterogeneity in cancer.


Assuntos
Instabilidade Cromossômica , Segregação de Cromossomos , Cromossomos , Epigênese Genética , Micronúcleos com Defeito Cromossômico , Neoplasias , Animais , Humanos , Camundongos , Cromatina/genética , Instabilidade Cromossômica/genética , Cromossomos/genética , Cromossomos/metabolismo , Histonas/química , Histonas/metabolismo , Neoplasias/genética , Neoplasias/patologia , Mitose , Variações do Número de Cópias de DNA , Processamento de Proteína Pós-Traducional
4.
Mol Cell ; 81(10): 2183-2200.e13, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34019788

RESUMO

To separate causal effects of histone acetylation on chromatin accessibility and transcriptional output, we used integrated epigenomic and transcriptomic analyses following acute inhibition of major cellular lysine acetyltransferases P300 and CBP in hematological malignancies. We found that catalytic P300/CBP inhibition dynamically perturbs steady-state acetylation kinetics and suppresses oncogenic transcriptional networks in the absence of changes to chromatin accessibility. CRISPR-Cas9 screening identified NCOR1 and HDAC3 transcriptional co-repressors as the principal antagonists of P300/CBP by counteracting acetylation turnover kinetics. Finally, deacetylation of H3K27 provides nucleation sites for reciprocal methylation switching, a feature that can be exploited therapeutically by concomitant KDM6A and P300/CBP inhibition. Overall, this study indicates that the steady-state histone acetylation-methylation equilibrium functions as a molecular rheostat governing cellular transcription that is amenable to therapeutic exploitation as an anti-cancer regimen.


Assuntos
Biocatálise , Histonas/metabolismo , Oncogenes , Transcrição Gênica , Fatores de Transcrição de p300-CBP/metabolismo , Acetilação , Linhagem Celular , Cromatina/metabolismo , Proteínas Correpressoras/metabolismo , Sequência Conservada , Evolução Molecular , Redes Reguladoras de Genes , Genoma , Histona Desacetilases/metabolismo , Humanos , Cinética , Metilação , Modelos Biológicos , RNA Polimerase II/metabolismo
5.
Cell ; 152(4): 714-26, 2013 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-23415222

RESUMO

Clonal evolution is a key feature of cancer progression and relapse. We studied intratumoral heterogeneity in 149 chronic lymphocytic leukemia (CLL) cases by integrating whole-exome sequence and copy number to measure the fraction of cancer cells harboring each somatic mutation. We identified driver mutations as predominantly clonal (e.g., MYD88, trisomy 12, and del(13q)) or subclonal (e.g., SF3B1 and TP53), corresponding to earlier and later events in CLL evolution. We sampled leukemia cells from 18 patients at two time points. Ten of twelve CLL cases treated with chemotherapy (but only one of six without treatment) underwent clonal evolution, predominantly involving subclones with driver mutations (e.g., SF3B1 and TP53) that expanded over time. Furthermore, presence of a subclonal driver mutation was an independent risk factor for rapid disease progression. Our study thus uncovers patterns of clonal evolution in CLL, providing insights into its stepwise transformation, and links the presence of subclones with adverse clinical outcomes.


Assuntos
Leucemia Linfocítica Crônica de Células B/genética , Mutação , Algoritmos , Animais , Linfócitos B/metabolismo , Variações do Número de Cópias de DNA , Estudo de Associação Genômica Ampla , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Ploidias
6.
Nat Rev Genet ; 22(1): 3-18, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32807900

RESUMO

Cancer represents an evolutionary process through which growing malignant populations genetically diversify, leading to tumour progression, relapse and resistance to therapy. In addition to genetic diversity, the cell-to-cell variation that fuels evolutionary selection also manifests in cellular states, epigenetic profiles, spatial distributions and interactions with the microenvironment. Therefore, the study of cancer requires the integration of multiple heritable dimensions at the resolution of the single cell - the atomic unit of somatic evolution. In this Review, we discuss emerging analytic and experimental technologies for single-cell multi-omics that enable the capture and integration of multiple data modalities to inform the study of cancer evolution. These data show that cancer results from a complex interplay between genetic and non-genetic determinants of somatic evolution.


Assuntos
Evolução Clonal/genética , Biologia Computacional , Variação Genética , Genômica , Neoplasias/genética , Epigenômica , Humanos , Mutação , Análise de Célula Única , Microambiente Tumoral
7.
Mol Cell ; 73(6): 1092-1094, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30901562

RESUMO

In this issue of Molecular Cell, Rodriguez-Meira et al. (2019) present TARGET-seq, an elegant single-cell method that genotypes somatic mutations and captures whole transcriptomes in the same tumor cells, thus paving the way to directly link somatic mutations with resulting transcriptional phenotypes in clonally diverse cancer populations.


Assuntos
Neoplasias , Análise de Célula Única , Genótipo , Humanos , Mutação , Análise de Sequência de RNA
8.
Nature ; 571(7765): 355-360, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31270458

RESUMO

Defining the transcriptomic identity of malignant cells is challenging in the absence of surface markers that distinguish cancer clones from one another, or from admixed non-neoplastic cells. To address this challenge, here we developed Genotyping of Transcriptomes (GoT), a method to integrate genotyping with high-throughput droplet-based single-cell RNA sequencing. We apply GoT to profile 38,290 CD34+ cells from patients with CALR-mutated myeloproliferative neoplasms to study how somatic mutations corrupt the complex process of human haematopoiesis. High-resolution mapping of malignant versus normal haematopoietic progenitors revealed an increasing fitness advantage with myeloid differentiation of cells with mutated CALR. We identified the unfolded protein response as a predominant outcome of CALR mutations, with a considerable dependency on cell identity, as well as upregulation of the NF-κB pathway specifically in uncommitted stem cells. We further extended the GoT toolkit to genotype multiple targets and loci that are distant from transcript ends. Together, these findings reveal that the transcriptional output of somatic mutations in myeloproliferative neoplasms is dependent on the native cell identity.


Assuntos
Genótipo , Mutação , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/patologia , Neoplasias/genética , Neoplasias/patologia , Transcriptoma/genética , Animais , Antígenos CD34/metabolismo , Calreticulina/genética , Linhagem Celular , Proliferação de Células , Células Clonais/classificação , Células Clonais/metabolismo , Células Clonais/patologia , Endorribonucleases/metabolismo , Hematopoese/genética , Células-Tronco Hematopoéticas/classificação , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Camundongos , Modelos Moleculares , Transtornos Mieloproliferativos/classificação , NF-kappa B/metabolismo , Neoplasias/classificação , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Mielofibrose Primária/genética , Mielofibrose Primária/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Resposta a Proteínas não Dobradas/genética
9.
Nature ; 569(7757): 576-580, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31092926

RESUMO

Genetic and epigenetic intra-tumoral heterogeneity cooperate to shape the evolutionary course of cancer1. Chronic lymphocytic leukaemia (CLL) is a highly informative model for cancer evolution as it undergoes substantial genetic diversification and evolution after therapy2,3. The CLL epigenome is also an important disease-defining feature4,5, and growing populations of cells in CLL diversify by stochastic changes in DNA methylation known as epimutations6. However, previous studies using bulk sequencing methods to analyse the patterns of DNA methylation were unable to determine whether epimutations affect CLL populations homogeneously. Here, to measure the epimutation rate at single-cell resolution, we applied multiplexed single-cell reduced-representation bisulfite sequencing to B cells from healthy donors and patients with CLL. We observed that the common clonal origin of CLL results in a consistently increased epimutation rate, with low variability in the cell-to-cell epimutation rate. By contrast, variable epimutation rates across healthy B cells reflect diverse evolutionary ages across the trajectory of B cell differentiation, consistent with epimutations serving as a molecular clock. Heritable epimutation information allowed us to reconstruct lineages at high-resolution with single-cell data, and to apply this directly to patient samples. The CLL lineage tree shape revealed earlier branching and longer branch lengths than in normal B cells, reflecting rapid drift after the initial malignant transformation and a greater proliferative history. Integration of single-cell bisulfite sequencing analysis with single-cell transcriptomes and genotyping confirmed that genetic subclones mapped to distinct clades, as inferred solely on the basis of epimutation information. Finally, to examine potential lineage biases during therapy, we profiled serial samples during ibrutinib-associated lymphocytosis, and identified clades of cells that were preferentially expelled from the lymph node after treatment, marked by distinct transcriptional profiles. The single-cell integration of genetic, epigenetic and transcriptional information thus charts the lineage history of CLL and its evolution with therapy.


Assuntos
Linhagem da Célula , Epigênese Genética , Evolução Molecular , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Sequência de Bases , Relógios Biológicos , Linhagem da Célula/genética , Metilação de DNA , Epigenoma/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Leucemia Linfocítica Crônica de Células B/metabolismo , Taxa de Mutação , Análise de Sequência de RNA , Análise de Célula Única , Transcrição Gênica
10.
Nature ; 562(7725): 133-139, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30250253

RESUMO

Bone consists of separate inner endosteal and outer periosteal compartments, each with distinct contributions to bone physiology and each maintaining separate pools of cells owing to physical separation by the bone cortex. The skeletal stem cell that gives rise to endosteal osteoblasts has been extensively studied; however, the identity of periosteal stem cells remains unclear1-5. Here we identify a periosteal stem cell (PSC) that is present in the long bones and calvarium of mice, displays clonal multipotency and self-renewal, and sits at the apex of a differentiation hierarchy. Single-cell and bulk transcriptional profiling show that PSCs display transcriptional signatures that are distinct from those of other skeletal stem cells and mature mesenchymal cells. Whereas other skeletal stem cells form bone via an initial cartilage template using the endochondral pathway4, PSCs form bone via a direct intramembranous route, providing a cellular basis for the divergence between intramembranous versus endochondral developmental pathways. However, there is plasticity in this division, as PSCs acquire endochondral bone formation capacity in response to injury. Genetic blockade of the ability of PSCs to give rise to bone-forming osteoblasts results in selective impairments in cortical bone architecture and defects in fracture healing. A cell analogous to mouse PSCs is present in the human periosteum, raising the possibility that PSCs are attractive targets for drug and cellular therapy for skeletal disorders. The identification of PSCs provides evidence that bone contains multiple pools of stem cells, each with distinct physiologic functions.


Assuntos
Desenvolvimento Ósseo , Osso e Ossos/citologia , Periósteo/citologia , Células-Tronco/citologia , Animais , Catepsina K/metabolismo , Diferenciação Celular , Feminino , Fêmur/citologia , Consolidação da Fratura , Regulação da Expressão Gênica , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Camundongos , Osteoblastos/citologia , Crânio/citologia
11.
Nature ; 601(7891): 31-32, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34880486
12.
Nat Methods ; 15(7): 531-534, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29941871

RESUMO

Comparison of sequencing data from a tumor sample with data from a matched germline control is a key step for accurate detection of somatic mutations. Detection sensitivity for somatic variants is greatly reduced when the matched normal sample is contaminated with tumor cells. To overcome this limitation, we developed deTiN, a method that estimates the tumor-in-normal (TiN) contamination level and, in cases affected by contamination, improves sensitivity by reclassifying initially discarded variants as somatic.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neoplasias/diagnóstico , Neoplasias/genética , Análise de Sequência de DNA/métodos , Simulação por Computador , Humanos , Mutação
13.
Nature ; 526(7574): 525-30, 2015 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-26466571

RESUMO

Which genetic alterations drive tumorigenesis and how they evolve over the course of disease and therapy are central questions in cancer biology. Here we identify 44 recurrently mutated genes and 11 recurrent somatic copy number variations through whole-exome sequencing of 538 chronic lymphocytic leukaemia (CLL) and matched germline DNA samples, 278 of which were collected in a prospective clinical trial. These include previously unrecognized putative cancer drivers (RPS15, IKZF3), and collectively identify RNA processing and export, MYC activity, and MAPK signalling as central pathways involved in CLL. Clonality analysis of this large data set further enabled reconstruction of temporal relationships between driver events. Direct comparison between matched pre-treatment and relapse samples from 59 patients demonstrated highly frequent clonal evolution. Thus, large sequencing data sets of clinically informative samples enable the discovery of novel genes associated with cancer, the network of relationships between the driver events, and their impact on disease relapse and clinical outcome.


Assuntos
Progressão da Doença , Evolução Molecular , Leucemia Linfocítica Crônica de Células B/genética , Mutação/genética , Recidiva Local de Neoplasia/genética , Transformação Celular Neoplásica/genética , Células Clonais/metabolismo , Células Clonais/patologia , Variações do Número de Cópias de DNA/genética , Exoma/genética , Genes myc/genética , Humanos , Fator de Transcrição Ikaros/genética , Leucemia Linfocítica Crônica de Células B/diagnóstico , Leucemia Linfocítica Crônica de Células B/patologia , Leucemia Linfocítica Crônica de Células B/terapia , Sistema de Sinalização das MAP Quinases/genética , Prognóstico , Processamento Pós-Transcricional do RNA/genética , Transporte de RNA/genética , Proteínas Ribossômicas/genética , Resultado do Tratamento
14.
Haematologica ; 105(5): 1379-1390, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31467127

RESUMO

To identify genomic alterations contributing to the pathogenesis of high-risk chronic lymphocytic leukemia (CLL) beyond the well-established role of TP53 aberrations, we comprehensively analyzed 75 relapsed/refractory and 71 treatment-naïve high-risk cases from prospective clinical trials by single nucleotide polymorphism arrays and targeted next-generation sequencing. Increased genomic complexity was a hallmark of relapsed/refractory and treatment-naïve high-risk CLL. In relapsed/refractory cases previously exposed to the selective pressure of chemo(immuno)therapy, gain(8)(q24.21) and del(9)(p21.3) were particularly enriched. Both alterations affect key regulators of cell-cycle progression, namely MYC and CDKN2A/B While homozygous CDKN2A/B loss has been directly associated with Richter transformation, we did not find this association for heterozygous loss of CDKN2A/B Gains in 8q24.21 were either focal gains in a MYC enhancer region or large gains affecting the MYC locus, but only the latter type was highly enriched in relapsed/refractory CLL (17%). In addition to a high frequency of NOTCH1 mutations (23%), we found recurrent genetic alterations in SPEN (4% mutated), RBPJ (8% deleted) and SNW1 (8% deleted), all affecting a protein complex that represses transcription of NOTCH1 target genes. We investigated the functional impact of these alterations on HES1, DTX1 and MYC gene transcription and found derepression of these NOTCH1 target genes particularly with SPEN mutations. In summary, we provide new insights into the genomic architecture of high-risk CLL, define novel recurrent DNA copy number alterations and refine knowledge on del(9p), gain(8q) and alterations affecting NOTCH1 signaling. This study was registered at ClinicalTrials.gov with number NCT01392079.


Assuntos
Leucemia Linfocítica Crônica de Células B , Receptor Notch1/genética , Ciclo Celular , Genômica , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Mutação , Estudos Prospectivos
16.
Nature ; 499(7457): 214-218, 2013 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-23770567

RESUMO

Major international projects are underway that are aimed at creating a comprehensive catalogue of all the genes responsible for the initiation and progression of cancer. These studies involve the sequencing of matched tumour-normal samples followed by mathematical analysis to identify those genes in which mutations occur more frequently than expected by random chance. Here we describe a fundamental problem with cancer genome studies: as the sample size increases, the list of putatively significant genes produced by current analytical methods burgeons into the hundreds. The list includes many implausible genes (such as those encoding olfactory receptors and the muscle protein titin), suggesting extensive false-positive findings that overshadow true driver events. We show that this problem stems largely from mutational heterogeneity and provide a novel analytical methodology, MutSigCV, for resolving the problem. We apply MutSigCV to exome sequences from 3,083 tumour-normal pairs and discover extraordinary variation in mutation frequency and spectrum within cancer types, which sheds light on mutational processes and disease aetiology, and in mutation frequency across the genome, which is strongly correlated with DNA replication timing and also with transcriptional activity. By incorporating mutational heterogeneity into the analyses, MutSigCV is able to eliminate most of the apparent artefactual findings and enable the identification of genes truly associated with cancer.


Assuntos
Heterogeneidade Genética , Mutação/genética , Neoplasias/genética , Oncogenes/genética , Artefatos , Período de Replicação do DNA , Exoma/genética , Reações Falso-Positivas , Expressão Gênica , Genoma Humano/genética , Humanos , Neoplasias Pulmonares/genética , Taxa de Mutação , Neoplasias/classificação , Neoplasias/patologia , Neoplasias de Células Escamosas/genética , Reprodutibilidade dos Testes , Tamanho da Amostra
17.
Curr Opin Hematol ; 23(4): 392-401, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27135978

RESUMO

PURPOSE OF REVIEW: The success of targeted therapies fostered the development of increasingly specific and effective therapeutics for B-cell malignancies. However, cancer plasticity facilitates disease relapse, whereby intratumoral heterogeneity fuels tumor evolution into a more aggressive and resistant form. Understanding cancer heterogeneity and the evolutionary processes underlying disease relapse is key for overcoming this limitation of current treatment strategies. In the present review, we delineate the current understanding of cancer evolution and the advances in both genetic and epigenetic fields, with a focus on non-Hodgkin B-cell lymphomas. RECENT FINDINGS: The use of massively parallel sequencing has provided insights into tumor heterogeneity, allowing determination of intratumoral genetic and epigenetic variability and identification of cancer driver mutations and (epi-)mutations. Increased heterogeneity prior to treatment results in faster disease relapse, and in many cases studying pretreatment clonal admixtures predicts the future evolutionary trajectory of relapsed disease. SUMMARY: Understanding the mechanisms underlying tumor heterogeneity and evolution provides valuable tools for the design of therapy within an evolutionary framework. This framework will ultimately aid in accurately predicting the evolutionary paths of B-cell malignancies, thereby guiding therapeutic strategies geared at directly anticipating and addressing cancer evolution.


Assuntos
Evolução Clonal , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Linfoma de Células B/genética , Progressão da Doença , Heterogeneidade Genética , Humanos , Linfoma de Células B/patologia , Linfoma de Células B/terapia , Terapia de Alvo Molecular , Mutação , Recidiva
18.
Eur J Immunol ; 43(9): 2263-72, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23765389

RESUMO

Treg cells hold enormous promise for therapeutic application in GVH disease, a lethal complication of allogeneic HSC transplantation. Mouse studies showed that donor-derived recipient-specific Treg (rsTreg) cells are far more efficient than polyclonal Treg cells in suppressing GVH disease. However, clinical grade preparations of rsTreg cells carries the risk of containing significant numbers of highly pathogenic recipient-specific effector T cells. We hypothesized that an alternative approach using Treg cells specific for an exogenous (i.e. nondonor, nonrecipient) Ag (exoTreg cells) can overcome this risk by taking advantage of the bystander suppressive effect of Treg cells. For this, we used a murine model for aggressive GVH disease. We expanded ex vivo exoTreg cells that are primed against the HY Ag, which is only expressed in males. ExoTreg cells supressed GVH disease as efficiently as rsTreg cells in recipient male mice. We also applied this strategy in female mice that do not express this Ag. While exoTreg cells were not effective in female recipients when applied alone, providing the cognate HY Ag in vivo along side effectively activated exoTreg cells and completely abrogated GVH disease, establishing a targeted on/off system to provide a suppressive effect on alloreactive effector T cells.


Assuntos
Doença Enxerto-Hospedeiro/imunologia , Antígeno H-Y/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/transplante , Animais , Feminino , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Transplante Homólogo
19.
STAR Protoc ; 5(2): 102966, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512867

RESUMO

Studying RNA splicing factor mutations is challenging due to difficulties in distinguishing wild-type and mutant cells within complex human tissues and inaccuracies associated with reconstructing splicing signals from short-read sequencing data. Here, we present Genotyping of Transcriptomes (GoT)-Splice, a protocol that overcomes these limitations by combining GoT with enhanced long-read single-cell transcriptome and cell-surface proteomics profiling. We describe steps for long-read library preparation and analysis, followed by cDNA re-amplification, enrichment of mutation of interest, sample indexing, and GoT library preparation. For complete details on the use and execution of this protocol, please refer to Cortés-López et al.1.


Assuntos
Proteínas de Membrana , Mutação , Splicing de RNA , Humanos , Splicing de RNA/genética , Mutação/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Perfilação da Expressão Gênica/métodos , Transcriptoma/genética , Proteômica/métodos , Biblioteca Gênica , Análise de Célula Única/métodos , Multiômica
20.
bioRxiv ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38826366

RESUMO

Somatic mosaicism is a hallmark of malignancy that is also pervasively observed in human physiological aging, with clonal expansions of cells harboring mutations in recurrently mutated driver genes. Bulk sequencing of tissue microdissection captures mutation frequencies, but cannot distinguish which mutations co-occur in the same clones to reconstruct clonal architectures, nor phenotypically profile clonal populations to delineate how driver mutations impact cellular behavior. To address these challenges, we developed single-cell Genotype-to-Phenotype sequencing (scG2P) for high-throughput, highly-multiplexed, single-cell joint capture of recurrently mutated genomic regions and mRNA phenotypic markers in cells or nuclei isolated from solid tissues. We applied scG2P to aged esophagus samples from five individuals with high alcohol and tobacco exposure and observed a clonal landscape dominated by a large number of clones with a single driver event, but only rare clones with two driver mutations. NOTCH1 mutants dominate the clonal landscape and are linked to stunted epithelial differentiation, while TP53 mutants and double-driver mutants promote clonal expansion through both differentiation biases and increased cell cycling. Thus, joint single-cell highly multiplexed capture of somatic mutations and mRNA transcripts enables high resolution reconstruction of clonal architecture and associated phenotypes in solid tissue somatic mosaicism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA