Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(6): 1440-1459.e24, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38490181

RESUMO

Following the fertilization of an egg by a single sperm, the egg coat or zona pellucida (ZP) hardens and polyspermy is irreversibly blocked. These events are associated with the cleavage of the N-terminal region (NTR) of glycoprotein ZP2, a major subunit of ZP filaments. ZP2 processing is thought to inactivate sperm binding to the ZP, but its molecular consequences and connection with ZP hardening are unknown. Biochemical and structural studies show that cleavage of ZP2 triggers its oligomerization. Moreover, the structure of a native vertebrate egg coat filament, combined with AlphaFold predictions of human ZP polymers, reveals that two protofilaments consisting of type I (ZP3) and type II (ZP1/ZP2/ZP4) components interlock into a left-handed double helix from which the NTRs of type II subunits protrude. Together, these data suggest that oligomerization of cleaved ZP2 NTRs extensively cross-links ZP filaments, rigidifying the egg coat and making it physically impenetrable to sperm.


Assuntos
Glicoproteínas da Zona Pelúcida , Humanos , Masculino , Sêmen , Espermatozoides/química , Espermatozoides/metabolismo , Zona Pelúcida/química , Zona Pelúcida/metabolismo , Glicoproteínas da Zona Pelúcida/química , Glicoproteínas da Zona Pelúcida/metabolismo , Óvulo/química , Óvulo/metabolismo , Feminino
2.
J Am Chem Soc ; 146(28): 19555-19565, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38963823

RESUMO

Gelation of protein condensates formed by liquid-liquid phase separation occurs in a wide range of biological contexts, from the assembly of biomaterials to the formation of fibrillar aggregates, and is therefore of interest for biomedical applications. Soluble-to-gel (sol-gel) transitions are controlled through macroscopic processes such as changes in temperature or buffer composition, resulting in bulk conversion of liquid droplets into microgels within minutes to hours. Using microscopy and mass spectrometry, we show that condensates of an engineered mini-spidroin (NT2repCTYF) undergo a spontaneous sol-gel transition resulting in the loss of exchange of proteins between the soluble and the condensed phase. This feature enables us to specifically trap a silk-domain-tagged target protein in the spidroin microgels. Surprisingly, laser pulses trigger near-instant gelation. By loading the condensates with fluorescent dyes or drugs, we can control the wavelength at which gelation is triggered. Fluorescence microscopy reveals that laser-induced gelation significantly further increases the partitioning of the fluorescent molecules into the condensates. In summary, our findings demonstrate direct control of phase transitions in individual condensates, opening new avenues for functional and structural characterization.


Assuntos
Lasers , Transição de Fase , Fibroínas/química , Corantes Fluorescentes/química , Géis/química
3.
EMBO J ; 39(24): e105908, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33118634

RESUMO

Na+ /H+ exchangers (NHEs) are ancient membrane-bound nanomachines that work to regulate intracellular pH, sodium levels and cell volume. NHE activities contribute to the control of the cell cycle, cell proliferation, cell migration and vesicle trafficking. NHE dysfunction has been linked to many diseases, and they are targets of pharmaceutical drugs. Despite their fundamental importance to cell homeostasis and human physiology, structural information for the mammalian NHE was lacking. Here, we report the cryogenic electron microscopy structure of NHE isoform 9 (SLC9A9) from Equus caballus at 3.2 Å resolution, an endosomal isoform highly expressed in the brain and associated with autism spectrum (ASD) and attention deficit hyperactivity (ADHD) disorders. Despite low sequence identity, the NHE9 architecture and ion-binding site are remarkably similar to distantly related bacterial Na+ /H+  antiporters with 13 transmembrane segments. Collectively, we reveal the conserved architecture of the NHE ion-binding site, their elevator-like structural transitions, the functional implications of autism disease mutations and the role of phosphoinositide lipids to promote homodimerization that, together, have important physiological ramifications.


Assuntos
Transporte Proteico/fisiologia , Trocadores de Sódio-Hidrogênio/química , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo , Animais , Sítios de Ligação , Encéfalo/metabolismo , Movimento Celular , Microscopia Crioeletrônica , Endossomos/metabolismo , Cavalos , Simulação de Dinâmica Molecular , Mutação , Conformação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Prótons , Alinhamento de Sequência , Sódio
4.
Mol Cell Proteomics ; 21(10): 100413, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36115577

RESUMO

The assembly of proteins and peptides into amyloid fibrils is causally linked to serious disorders such as Alzheimer's disease. Multiple proteins have been shown to prevent amyloid formation in vitro and in vivo, ranging from highly specific chaperone-client pairs to completely nonspecific binding of aggregation-prone peptides. The underlying interactions remain elusive. Here, we turn to the machine learning-based structure prediction algorithm AlphaFold2 to obtain models for the nonspecific interactions of ß-lactoglobulin, transthyretin, or thioredoxin 80 with the model amyloid peptide amyloid ß and the highly specific complex between the BRICHOS chaperone domain of C-terminal region of lung surfactant protein C and its polyvaline target. Using a combination of native mass spectrometry (MS) and ion mobility MS, we show that nonspecific chaperoning is driven predominantly by hydrophobic interactions of amyloid ß with hydrophobic surfaces in ß-lactoglobulin, transthyretin, and thioredoxin 80, and in part regulated by oligomer stability. For C-terminal region of lung surfactant protein C, native MS and hydrogen-deuterium exchange MS reveal that a disordered region recognizes the polyvaline target by forming a complementary ß-strand. Hence, we show that AlphaFold2 and MS can yield atomistic models of hard-to-capture protein interactions that reveal different chaperoning mechanisms based on separate ligand properties and may provide possible clues for specific therapeutic intervention.


Assuntos
Peptídeos beta-Amiloides , Amiloide , Humanos , Amiloide/química , Amiloide/metabolismo , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Pré-Albumina , Deutério , Ligantes , Chaperonas Moleculares/metabolismo , Espectrometria de Massas , Aprendizado de Máquina , Tiorredoxinas , Lactoglobulinas , Proteínas Associadas a Surfactantes Pulmonares
5.
Nano Lett ; 23(12): 5836-5841, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37084706

RESUMO

Many protein condensates can convert to fibrillar aggregates, but the underlying mechanisms are unclear. Liquid-liquid phase separation (LLPS) of spider silk proteins, spidroins, suggests a regulatory switch between both states. Here, we combine microscopy and native mass spectrometry to investigate the influence of protein sequence, ions, and regulatory domains on spidroin LLPS. We find that salting out-effects drive LLPS via low-affinity stickers in the repeat domains. Interestingly, conditions that enable LLPS simultaneously cause dissociation of the dimeric C-terminal domain (CTD), priming it for aggregation. Since the CTD enhances LLPS of spidroins but is also required for their conversion into amyloid-like fibers, we expand the stickers and spacers-model of phase separation with the concept of folded domains as conditional stickers that represent regulatory units.


Assuntos
Fibroínas , Seda , Seda/química , Fibroínas/química , Proteínas de Artrópodes , Sequência de Aminoácidos
6.
J Biol Chem ; 298(5): 101913, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35398358

RESUMO

The N-terminal (NT) domain of spider silk proteins (spidroins) is crucial for their storage at high concentrations and also regulates silk assembly. NTs from the major ampullate spidroin (MaSp) and the minor ampullate spidroin are monomeric at neutral pH and confer solubility to spidroins, whereas at lower pH, they dimerize to interconnect spidroins in a fiber. This dimerization is known to result from modulation of electrostatic interactions by protonation of well-conserved glutamates, although it is undetermined if this mechanism applies to other spidroin types as well. Here, we determine the solution and crystal structures of the flagelliform spidroin NT, which shares only 35% identity with MaSp NT, and investigate the mechanisms of its dimerization. We show that flagelliform spidroin NT is structurally similar to MaSp NT and that the electrostatic intermolecular interaction between Asp 40 and Lys 65 residues is conserved. However, the protonation events involve a different set of residues than in MaSp, indicating that an overall mechanism of pH-dependent dimerization is conserved but can be mediated by different pathways in different silk types.


Assuntos
Fibroínas , Seda , Aranhas , Animais , Sequência Conservada , Dimerização , Fibroínas/química , Fibroínas/genética , Fibroínas/metabolismo , Concentração de Íons de Hidrogênio , Domínios Proteicos/genética , Seda/química , Seda/genética , Seda/metabolismo , Aranhas/química , Aranhas/genética , Aranhas/metabolismo
7.
J Am Chem Soc ; 145(19): 10659-10668, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37145883

RESUMO

Liquid-liquid phase separation (LLPS) of heterogeneous ribonucleoproteins (hnRNPs) drives the formation of membraneless organelles, but structural information about their assembled states is still lacking. Here, we address this challenge through a combination of protein engineering, native ion mobility mass spectrometry, and molecular dynamics simulations. We used an LLPS-compatible spider silk domain and pH changes to control the self-assembly of the hnRNPs FUS, TDP-43, and hCPEB3, which are implicated in neurodegeneration, cancer, and memory storage. By releasing the proteins inside the mass spectrometer from their native assemblies, we could monitor conformational changes associated with liquid-liquid phase separation. We find that FUS monomers undergo an unfolded-to-globular transition, whereas TDP-43 oligomerizes into partially disordered dimers and trimers. hCPEB3, on the other hand, remains fully disordered with a preference for fibrillar aggregation over LLPS. The divergent assembly mechanisms revealed by ion mobility mass spectrometry of soluble protein species that exist under LLPS conditions suggest structurally distinct complexes inside liquid droplets that may impact RNA processing and translation depending on biological context.


Assuntos
Proteínas de Ligação a DNA , Proteínas de Ligação a RNA , Proteínas de Ligação a DNA/química , Espectrometria de Massas
8.
Anal Chem ; 95(29): 10869-10872, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37439740

RESUMO

Engineering liquid-liquid phase separation (LLPS) of proteins and peptides holds great promise for the development of therapeutic carriers with intracellular delivery capability but requires accurate determination of their assembly properties in vitro, usually with fluorescently labeled cargo. Here, we use mass spectrometry (MS) to investigate redox-sensitive coacervate microdroplets (the dense phase formed during LLPS) assembled from a short His- and Tyr-rich peptide. We can monitor the enrichment of a reduced peptide in dilute phase as the microdroplets dissolve triggered by their redox-sensitive side chain, thus providing a quantitative readout for disassembly. Furthermore, MS can detect the release of a short peptide from coacervates under reducing conditions. In summary, with MS, we can monitor the disassembly and cargo release of engineered coacervates used as therapeutic carriers without the need for additional labels.


Assuntos
Peptídeos , Proteínas , Peptídeos/química , Proteínas/química , Espectrometria de Massas
9.
Small ; 19(46): e2304031, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37455347

RESUMO

Amyloid fibrils-nanoscale fibrillar aggregates with high levels of order-are pathogenic in some today incurable human diseases; however, there are also many physiologically functioning amyloids in nature. The process of amyloid formation is typically nucleation-elongation-dependent, as exemplified by the pathogenic amyloid-ß peptide (Aß) that is associated with Alzheimer's disease. Spider silk, one of the toughest biomaterials, shares characteristics with amyloid. In this study, it is shown that forming amyloid-like nanofibrils is an inherent property preserved by various spider silk proteins (spidroins). Both spidroins and Aß capped by spidroin N- and C-terminal domains, can assemble into macroscopic spider silk-like fibers that consist of straight nanofibrils parallel to the fiber axis as observed in native spider silk. While Aß forms amyloid nanofibrils through a nucleation-dependent pathway and exhibits strong cytotoxicity and seeding effects, spidroins spontaneously and rapidly form amyloid-like nanofibrils via a non-nucleation-dependent polymerization pathway that involves lateral packing of fibrils. Spidroin nanofibrils share amyloid-like properties but lack strong cytotoxicity and the ability to self-seed or cross-seed human amyloidogenic peptides. These results suggest that spidroins´ unique primary structures have evolved to allow functional properties of amyloid, and at the same time direct their fibrillization pathways to avoid formation of cytotoxic intermediates.


Assuntos
Fibroínas , Aranhas , Humanos , Animais , Seda/química , Fibroínas/química , Polimerização , Amiloide , Peptídeos beta-Amiloides/metabolismo , Aranhas/metabolismo
10.
Nat Methods ; 17(5): 505-508, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32371966

RESUMO

Ligands bound to protein assemblies provide critical information for function, yet are often difficult to capture and define. Here we develop a top-down method, 'nativeomics', unifying 'omics' (lipidomics, proteomics, metabolomics) analysis with native mass spectrometry to identify ligands bound to membrane protein assemblies. By maintaining the link between proteins and ligands, we define the lipidome/metabolome in contact with membrane porins and a mitochondrial translocator to discover potential regulators of protein function.


Assuntos
Lipídeos/análise , Espectrometria de Massas/métodos , Proteínas de Membrana/metabolismo , Metaboloma , Proteoma/análise , Humanos , Ligantes
11.
Nature ; 541(7637): 421-424, 2017 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-28077870

RESUMO

Oligomerization of membrane proteins in response to lipid binding has a critical role in many cell-signalling pathways but is often difficult to define or predict. Here we report the development of a mass spectrometry platform to determine simultaneously the presence of interfacial lipids and oligomeric stability and to uncover how lipids act as key regulators of membrane-protein association. Evaluation of oligomeric strength for a dataset of 125 α-helical oligomeric membrane proteins reveals an absence of interfacial lipids in the mass spectra of 12 membrane proteins with high oligomeric stability. For the bacterial homologue of the eukaryotic biogenic transporters (LeuT, one of the proteins with the lowest oligomeric stability), we found a precise cohort of lipids within the dimer interface. Delipidation, mutation of lipid-binding sites or expression in cardiolipin-deficient Escherichia coli abrogated dimer formation. Molecular dynamics simulation revealed that cardiolipin acts as a bidentate ligand, bridging across subunits. Subsequently, we show that for the Vibrio splendidus sugar transporter SemiSWEET, another protein with low oligomeric stability, cardiolipin shifts the equilibrium from monomer to functional dimer. We hypothesized that lipids are essential for dimerization of the Na+/H+ antiporter NhaA from E. coli, which has the lowest oligomeric strength, but not for the substantially more stable homologous Thermus thermophilus protein NapA. We found that lipid binding is obligatory for dimerization of NhaA, whereas NapA has adapted to form an interface that is stable without lipids. Overall, by correlating interfacial strength with the presence of interfacial lipids, we provide a rationale for understanding the role of lipids in both transient and stable interactions within a range of α-helical membrane proteins, including G-protein-coupled receptors.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Lipídeos/química , Lipídeos/farmacologia , Espectrometria de Massas/métodos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Multimerização Proteica/efeitos dos fármacos , Sítios de Ligação/genética , Cardiolipinas/química , Cardiolipinas/metabolismo , Cardiolipinas/farmacologia , Membrana Celular/química , Membrana Celular/metabolismo , Escherichia coli/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Ligantes , Modelos Moleculares , Simulação de Dinâmica Molecular , Moritella/química , Estabilidade Proteica/efeitos dos fármacos , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Trocadores de Sódio-Hidrogênio/química , Trocadores de Sódio-Hidrogênio/metabolismo , Termodinâmica , Thermus thermophilus/química
12.
J Am Chem Soc ; 144(27): 11949-11954, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35749730

RESUMO

α-Synuclein (α-Syn) is an intrinsically disordered protein which self-assembles into highly organized ß-sheet structures that accumulate in plaques in brains of Parkinson's disease patients. Oxidative stress influences α-Syn structure and self-assembly; however, the basis for this remains unclear. Here we characterize the chemical and physical effects of mild oxidation on monomeric α-Syn and its aggregation. Using a combination of biophysical methods, small-angle X-ray scattering, and native ion mobility mass spectrometry, we find that oxidation leads to formation of intramolecular dityrosine cross-linkages and a compaction of the α-Syn monomer by a factor of √2. Oxidation-induced compaction is shown to inhibit ordered self-assembly and amyloid formation by steric hindrance, suggesting an important role of mild oxidation in preventing amyloid formation.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Amiloide/química , Humanos , Doença de Parkinson/metabolismo , Tirosina/análogos & derivados , Tirosina/química , alfa-Sinucleína/química
13.
Cell Mol Life Sci ; 78(3): 1131-1138, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32959070

RESUMO

Proinsulin C-peptide (C-peptide) has drawn much research attention. Even if the peptide has turned out not to be important in the treatment of diabetes, every phase of C-peptide research has changed our view on insulin and peptide hormone biology. The first phase revealed that peptide hormones can be subject to processing, and that their pro-forms may involve regulatory stages. The second phase revealed the possibility that one prohormone could harbor more than one activity, and that the additional activities should be taken into account in the development of hormone-based therapies. In the third phase, a combined view of the evolutionary patterns in hormone biology allowed an assessment of C-peptide´s role in physiology, and of how biological activities and physiological functions are shaped by evolutionary processes. In addition to this distinction, C-peptide research has produced further advances. For example, C-peptide fragments are successfully administered in immunotherapy of type I diabetes, and plasma C-peptide levels remain a standard for measurement of beta cell activity in patients. Even if the concept of C-peptide as a hormone is presently not supported, some of its bioactivities continue to influence our understanding of evolutionary changes of also other peptides.


Assuntos
Peptídeo C/metabolismo , Peptídeo C/sangue , Peptídeo C/química , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Evolução Molecular , Humanos , Agregados Proteicos , Conformação Proteica
14.
Biochemistry ; 60(9): 678-688, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33621049

RESUMO

Protein oligomerization is a commonly encountered strategy by which the functional repertoire of proteins is increased. This, however, is a double-edged sword strategy because protein oligomerization is notoriously difficult to control. Living organisms have therefore developed a number of chaperones that prevent protein aggregation. The small ATP-independent molecular chaperone domain proSP-C BRICHOS, which is mainly trimeric, specifically inhibits fibril surface-catalyzed nucleation reactions that give rise to toxic oligomers during the aggregation of the Alzheimer's disease-related amyloid-ß peptide (Aß42). Here, we have created a stable proSP-C BRICHOS monomer mutant and show that it does not bind to monomeric Aß42 but has a high affinity for Aß42 fibrils, using surface plasmon resonance. Kinetic analysis of Aß42 aggregation profiles, measured by thioflavin T fluorescence, reveals that the proSP-C BRICHOS monomer mutant strongly inhibits secondary nucleation reactions and thereby reduces the level of catalytic formation of toxic Aß42 oligomers. To study binding between the proSP-C BRICHOS monomer mutant and small soluble Aß42 aggregates, we analyzed fluorescence cross-correlation spectroscopy measurements with the maximum entropy method for fluorescence correlation spectroscopy. We found that the proSP-C BRICHOS monomer mutant binds to the smallest emerging Aß42 aggregates that are comprised of eight or fewer Aß42 molecules, which are already secondary nucleation competent. Our approach can be used to provide molecular-level insights into the mechanisms of action of substances that interfere with protein aggregation.


Assuntos
Trifosfato de Adenosina/metabolismo , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Chaperonas Moleculares , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Agregação Patológica de Proteínas , Multimerização Proteica , Proteína C Associada a Surfactante Pulmonar/metabolismo , Humanos , Domínios Proteicos , Proteína C Associada a Surfactante Pulmonar/genética
15.
EMBO J ; 35(18): 1963-78, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27354364

RESUMO

Pre-B-cell leukemia homeobox (PBX) transcription factors are known to regulate organogenesis, but their molecular targets and function in midbrain dopaminergic neurons (mDAn) as well as their role in neurodegenerative diseases are unknown. Here, we show that PBX1 controls a novel transcriptional network required for mDAn specification and survival, which is sufficient to generate mDAn from human stem cells. Mechanistically, PBX1 plays a dual role in transcription by directly repressing or activating genes, such as Onecut2 to inhibit lateral fates during embryogenesis, Pitx3 to promote mDAn development, and Nfe2l1 to protect from oxidative stress. Notably, PBX1 and NFE2L1 levels are severely reduced in dopaminergic neurons of the substantia nigra of Parkinson's disease (PD) patients and decreased NFE2L1 levels increases damage by oxidative stress in human midbrain cells. Thus, our results reveal novel roles for PBX1 and its transcriptional network in mDAn development and PD, opening the door for new therapeutic interventions.


Assuntos
Diferenciação Celular , Proteínas de Ligação a DNA/metabolismo , Neurônios Dopaminérgicos/fisiologia , Redes Reguladoras de Genes , Doença de Parkinson/patologia , Proteínas Proto-Oncogênicas/metabolismo , Substância Negra/patologia , Humanos , Fator de Transcrição 1 de Leucemia de Células Pré-B
16.
Anal Chem ; 92(18): 12297-12303, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32660238

RESUMO

In structural biology, collision cross sections (CCSs) from ion mobility mass spectrometry (IM-MS) measurements are routinely compared to computationally or experimentally derived protein structures. Here, we investigate whether CCS data can inform about the shape of a protein in the absence of specific reference structures. Analysis of the proteins in the CCS database shows that protein complexes with low apparent densities are structurally more diverse than those with a high apparent density. Although assigning protein shapes purely on CCS data is not possible, we find that we can distinguish oblate- and prolate-shaped protein complexes by using the CCS, molecular weight, and oligomeric states to mine the Protein Data Bank (PDB) for potentially similar protein structures. Furthermore, comparing the CCS of a ferritin cage to the solution structures in the PDB reveals significant deviations caused by structural collapse in the gas phase. We then apply the strategy to an integral membrane protein by comparing the shapes of a prokaryotic and a eukaryotic sodium/proton antiporter homologue. We conclude that mining the PDB with IM-MS data is a time-effective way to derive low-resolution structural models.


Assuntos
Bases de Dados de Proteínas , Ferritinas/análise , Archaeoglobus fulgidus/química , Espectrometria de Mobilidade Iônica
17.
Biochem Soc Trans ; 48(2): 547-558, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32129823

RESUMO

A growing number of integral membrane proteins have been shown to tune their activity by selectively interacting with specific lipids. The ability to regulate biological functions via lipid interactions extends to the diverse group of proteins that associate only peripherally with the lipid bilayer. However, the structural basis of these interactions remains challenging to study due to their transient and promiscuous nature. Recently, native mass spectrometry has come into focus as a new tool to investigate lipid interactions in membrane proteins. Here, we outline how the native MS strategies developed for integral membrane proteins can be applied to generate insights into the structure and function of peripheral membrane proteins. Specifically, native MS studies of proteins in complex with detergent-solubilized lipids, bound to lipid nanodiscs, and released from native-like lipid vesicles all shed new light on the role of lipid interactions. The unique ability of native MS to capture and interrogate protein-protein, protein-ligand, and protein-lipid interactions opens exciting new avenues for the study of peripheral membrane protein biology.


Assuntos
Lipídeos/química , Espectrometria de Massas , Proteínas de Membrana/química , Antígenos CD1/química , Peptídeos Catiônicos Antimicrobianos/química , Sítios de Ligação , Detergentes/química , Detergentes/farmacologia , Glicoesfingolipídeos/química , Humanos , Bicamadas Lipídicas/química , Peptídeos/química , Mapeamento de Interação de Proteínas , Espectrometria de Massas por Ionização por Electrospray , Ubiquinona/química
18.
Angew Chem Int Ed Engl ; 59(9): 3523-3528, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-31886601

RESUMO

Membrane proteins engage in a variety of contacts with their surrounding lipids, but distinguishing between specifically bound lipids, and non-specific, annular interactions is a challenging problem. Applying native mass spectrometry to three membrane protein complexes with different lipid-binding properties, we explore the ability of detergents to compete with lipids bound in different environments. We show that lipids in annular positions on the presenilin homologue protease are subject to constant exchange with detergent. By contrast, detergent-resistant lipids bound at the dimer interface in the leucine transporter show decreased koff rates in molecular dynamics simulations. Turning to the lipid flippase MurJ, we find that addition of the natural substrate lipid-II results in the formation of a 1:1 protein-lipid complex, where the lipid cannot be displaced by detergent from the highly protected active site. In summary, we distinguish annular from non-annular lipids based on their exchange rates in solution.


Assuntos
Lipídeos/química , Espectrometria de Massas , Proteínas de Membrana/química , Cardiolipinas/química , Cardiolipinas/metabolismo , Detergentes/química , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Proteínas de Membrana/metabolismo , Methanomicrobiaceae/metabolismo , Simulação de Dinâmica Molecular , Presenilinas/química , Presenilinas/metabolismo , Ligação Proteica
19.
Nat Chem Biol ; 13(3): 262-264, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28068309

RESUMO

Herein we present a chimeric recombinant spider silk protein (spidroin) whose aqueous solubility equals that of native spider silk dope and a spinning device that is based solely on aqueous buffers, shear forces and lowered pH. The process recapitulates the complex molecular mechanisms that dictate native spider silk spinning and is highly efficient; spidroin from one liter of bacterial shake-flask culture is enough to spin a kilometer of the hitherto toughest as-spun artificial spider silk fiber.


Assuntos
Biomimética , Fibroínas/química , Animais , Concentração de Íons de Hidrogênio , Proteínas Recombinantes/química
20.
Nature ; 482(7386): 519-23, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22343898

RESUMO

Human neurodegenerative diseases have the temporal hallmark of afflicting the elderly population. Ageing is one of the most prominent factors to influence disease onset and progression, yet little is known about the molecular pathways that connect these processes. To understand this connection it is necessary to identify the pathways that functionally integrate ageing, chronic maintenance of the brain and modulation of neurodegenerative disease. MicroRNAs (miRNA) are emerging as critical factors in gene regulation during development; however, their role in adult-onset, age-associated processes is only beginning to be revealed. Here we report that the conserved miRNA miR-34 regulates age-associated events and long-term brain integrity in Drosophila, providing a molecular link between ageing and neurodegeneration. Fly mir-34 expression exhibits adult-onset, brain-enriched and age-modulated characteristics. Whereas mir-34 loss triggers a gene profile of accelerated brain ageing, late-onset brain degeneration and a catastrophic decline in survival, mir-34 upregulation extends median lifespan and mitigates neurodegeneration induced by human pathogenic polyglutamine disease protein. Some of the age-associated effects of miR-34 require adult-onset translational repression of Eip74EF, an essential ETS domain transcription factor involved in steroid hormone pathways. Our studies indicate that miRNA-dependent pathways may have an impact on adult-onset, age-associated events by silencing developmental genes that later have a deleterious influence on adult life cycle and disease, and highlight fly miR-34 as a key miRNA with a role in this process.


Assuntos
Envelhecimento/genética , Modelos Animais de Doenças , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Regulação da Expressão Gênica/genética , MicroRNAs/genética , Doenças Neurodegenerativas/genética , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Regulação para Baixo , Proteínas de Drosophila/biossíntese , Proteínas de Drosophila/genética , Feminino , Temperatura Alta , Humanos , Longevidade/genética , Masculino , Mutação , Doenças Neurodegenerativas/patologia , Biossíntese de Proteínas , RNA Mensageiro/análise , RNA Mensageiro/genética , Análise de Sobrevida , Fatores de Tempo , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA