Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microb Ecol ; 87(1): 110, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39215820

RESUMO

Coral reefs rely heavily on reef fish for their health, yet overfishing has resulted in their decline, leading to an increase in fast-growing algae and changes in reef ecosystems, a phenomenon described as the phase-shift. A clearer understanding of the intricate interplay between herbivorous, their food, and their gut microbiomes could enhance reef health. This study examines the gut microbiome and isotopic markers (δ13C and δ15N) of four key nominally herbivorous reef fish species (Acanthurus chirurgus, Kyphosus sp., Scarus trispinosus, and Sparisoma axillare) in the Southwestern Atlantic's Abrolhos Reef systems. Approximately 16.8 million 16S rRNA sequences were produced for the four fish species, with an average of 317,047 ± 57,007 per species. Bacteria such as Proteobacteria, Firmicutes, and Cyanobacteria were prevalent in their microbiomes. These fish show unique microbiomes that result from co-diversification, diet, and restricted movement. Coral-associated bacteria (Endozoicomonas, Rhizobia, and Ruegeria) were found in abundance in the gut contents of the parrotfish species Sc. trispinosus and Sp. axillare. These parrotfishes could aid coral health by disseminating such beneficial bacteria across the reef. Meanwhile, Kyphosus sp. predominantly had Pirellulaceae and Rhodobacteraceae. Four fish species had a diet composed of turf components (filamentous Cyanobacteria) and brown algae (Dictyopteris). They also had similar isotopic niches, suggesting they shared food sources. A significant difference was observed between the isotopic signature of fish muscular gut tissue and gut contents, pointing to the role that host genetics and gut microbes play in differentiating fish tissues.


Assuntos
Bactérias , Recifes de Corais , Peixes , Microbioma Gastrointestinal , RNA Ribossômico 16S , Animais , RNA Ribossômico 16S/genética , Peixes/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Herbivoria , Especificidade da Espécie , Isótopos de Carbono/análise , Isótopos de Nitrogênio/análise , Perciformes/microbiologia , Dieta/veterinária
2.
Sci Total Environ ; 904: 166873, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37689208

RESUMO

Mollusc rearing is a relevant global socioeconomic activity. However, this activity has faced severe problems in the last years in southeast Brazil. The mariculture scallop production dropped from 51,2 tons in 2016 to 10,2 tons in 2022 in the Baia da Ilha Grande (BIG; Rio de Janeiro). However, the possible causes of this collapse are unknown. This study aimed to analyze decadal trends of water quality in Nodipecten nodosus spat and adult production in BIG. We also performed physical-chemical and biological water quality analyses of three scallop farms and two nearby locations at BIG in 2022 to evaluate possible environmental stressors and risks. Scallop spat production dropped drastically in the last five years (2018-2022: mean ± stdev: 0.47 ± 0.45 million). Spat production was higher in colder waters and during peaks of Chlorophyll a in the last 13 years. Reduction of Chlorophyll a coincided with decreasing spat production in the last five years. Warmer periods (>27 °C) of the year may hamper scallop development. Counts of potentially pathogenic bacteria (Vibrios) and Escherichia coli were significantly higher in warmer periods which may further reduce scallop productivity. Shotgun metagenomics of seawater samples from the five studied corroborated these culture-based counts. Vibrios and fecal indicator bacteria metagenomic sequences were abundant across the entire study area throughout 2022. The results of this study suggest the collapse of scallop mariculture is the result of a synergistic negative effect of global warming and poor seawater quality.


Assuntos
Aquecimento Global , Pectinidae , Animais , Clorofila A , Brasil , Poluição da Água
3.
Mol Biochem Parasitol ; 246: 111414, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34551360

RESUMO

Neobenedenia melleni, a marine fish ectoparasite, is responsible for considerable losses in the mariculture industry. In maintaining the parasite's homeostasis, sterols are structural and functional lipids that perform vital functions. Thus, understanding the mechanisms of biosynthesis and the uptake of sterols can reveal potential pharmacological targets. The objective of this work was thereby to characterize the N. melleni sterols. The most abundant sterol found was cholesterol in either its free (47.48 ± 15.93 %) or esterified form. However, its precursors, squalene (3.53 ± 0.92 %) and desmosterol (0.25 ± 0.03 %), were also found, suggesting the uptake of these intermediates from hosts or an unusual active pathway of sterol biosynthesis, which can be further explored as pharmacological targets.


Assuntos
Esteróis , Trematódeos , Animais , Colesterol/metabolismo , Trematódeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA