Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(5): e2308776121, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38252831

RESUMO

We present a drug design strategy based on structural knowledge of protein-protein interfaces selected through virus-host coevolution and translated into highly potential small molecules. This approach is grounded on Vinland, the most comprehensive atlas of virus-human protein-protein interactions with annotation of interacting domains. From this inspiration, we identified small viral protein domains responsible for interaction with human proteins. These peptides form a library of new chemical entities used to screen for replication modulators of several pathogens. As a proof of concept, a peptide from a KSHV protein, identified as an inhibitor of influenza virus replication, was translated into a small molecule series with low nanomolar antiviral activity. By targeting the NEET proteins, these molecules turn out to be of therapeutic interest in a nonalcoholic steatohepatitis mouse model with kidney lesions. This study provides a biomimetic framework to design original chemistries targeting cellular proteins, with indications going far beyond infectious diseases.


Assuntos
Influenza Humana , Vírus , Animais , Camundongos , Humanos , Proteoma , Peptídeos/farmacologia , Descoberta de Drogas
2.
J Proteome Res ; 23(2): 532-549, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38232391

RESUMO

Since 2010, the Human Proteome Project (HPP), the flagship initiative of the Human Proteome Organization (HUPO), has pursued two goals: (1) to credibly identify the protein parts list and (2) to make proteomics an integral part of multiomics studies of human health and disease. The HPP relies on international collaboration, data sharing, standardized reanalysis of MS data sets by PeptideAtlas and MassIVE-KB using HPP Guidelines for quality assurance, integration and curation of MS and non-MS protein data by neXtProt, plus extensive use of antibody profiling carried out by the Human Protein Atlas. According to the neXtProt release 2023-04-18, protein expression has now been credibly detected (PE1) for 18,397 of the 19,778 neXtProt predicted proteins coded in the human genome (93%). Of these PE1 proteins, 17,453 were detected with mass spectrometry (MS) in accordance with HPP Guidelines and 944 by a variety of non-MS methods. The number of neXtProt PE2, PE3, and PE4 missing proteins now stands at 1381. Achieving the unambiguous identification of 93% of predicted proteins encoded from across all chromosomes represents remarkable experimental progress on the Human Proteome parts list. Meanwhile, there are several categories of predicted proteins that have proved resistant to detection regardless of protein-based methods used. Additionally there are some PE1-4 proteins that probably should be reclassified to PE5, specifically 21 LINC entries and ∼30 HERV entries; these are being addressed in the present year. Applying proteomics in a wide array of biological and clinical studies ensures integration with other omics platforms as reported by the Biology and Disease-driven HPP teams and the antibody and pathology resource pillars. Current progress has positioned the HPP to transition to its Grand Challenge Project focused on determining the primary function(s) of every protein itself and in networks and pathways within the context of human health and disease.


Assuntos
Anticorpos , Proteoma , Humanos , Proteoma/genética , Proteoma/análise , Bases de Dados de Proteínas , Espectrometria de Massas/métodos , Proteômica/métodos
3.
J Proteome Res ; 22(4): 1148-1158, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-36445260

RESUMO

The Chromosome-centric Human Proteome Project (C-HPP) aims at identifying the proteins as gene products encoded by the human genome, characterizing their isoforms and functions. The existence of products has now been confirmed for 93.2% of the genes at the protein level. The remaining mostly correspond to proteins of low abundance or difficult to access. Over the past years, we have significantly contributed to the identification of missing proteins in the human spermatozoa. We pursue our search in the reproductive sphere with a focus on early human embryonic development. Pluripotent cells, developing into the fetus, and trophoblast cells, giving rise to the placenta, emerge during the first weeks. This emergence is a focus of scientists working in the field of reproduction, placentation and regenerative medicine. Most knowledge has been harnessed by transcriptomic analysis. Interestingly, some genes are uniquely expressed in those cells, giving the opportunity to uncover new proteins that might play a crucial role in setting up the molecular events underlying early embryonic development. Here, we analyzed naive pluripotent and trophoblastic stem cells and discovered 4 new missing proteins, thus contributing to the C-HPP. The mass spectrometry proteomics data was deposited on ProteomeXchange under the data set identifier PXD035768.


Assuntos
Proteoma , Trofoblastos , Masculino , Humanos , Proteoma/genética , Proteoma/análise , Espectrometria de Massas , Cromossomos/química , Linhagem Celular
4.
J Proteome Res ; 22(4): 1024-1042, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-36318223

RESUMO

The 2022 Metrics of the Human Proteome from the HUPO Human Proteome Project (HPP) show that protein expression has now been credibly detected (neXtProt PE1 level) for 18 407 (93.2%) of the 19 750 predicted proteins coded in the human genome, a net gain of 50 since 2021 from data sets generated around the world and reanalyzed by the HPP. Conversely, the number of neXtProt PE2, PE3, and PE4 missing proteins has been reduced by 78 from 1421 to 1343. This represents continuing experimental progress on the human proteome parts list across all the chromosomes, as well as significant reclassifications. Meanwhile, applying proteomics in a vast array of biological and clinical studies continues to yield significant findings and growing integration with other omics platforms. We present highlights from the Chromosome-Centric HPP, Biology and Disease-driven HPP, and HPP Resource Pillars, compare features of mass spectrometry and Olink and Somalogic platforms, note the emergence of translation products from ribosome profiling of small open reading frames, and discuss the launch of the initial HPP Grand Challenge Project, "A Function for Each Protein".


Assuntos
Proteoma , Proteômica , Humanos , Proteoma/genética , Proteoma/análise , Bases de Dados de Proteínas , Espectrometria de Massas/métodos , Fases de Leitura Aberta , Proteômica/métodos
5.
Nucleic Acids Res ; 48(D1): D328-D334, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31724716

RESUMO

The neXtProt knowledgebase (https://www.nextprot.org) is an integrative resource providing both data on human protein and the tools to explore these. In order to provide comprehensive and up-to-date data, we evaluate and add new data sets. We describe the incorporation of three new data sets that provide expression, function, protein-protein binary interaction, post-translational modifications (PTM) and variant information. New SPARQL query examples illustrating uses of the new data were added. neXtProt has continued to develop tools for proteomics. We have improved the peptide uniqueness checker and have implemented a new protein digestion tool. Together, these tools make it possible to determine which proteases can be used to identify trypsin-resistant proteins by mass spectrometry. In terms of usability, we have finished revamping our web interface and completely rewritten our API. Our SPARQL endpoint now supports federated queries. All the neXtProt data are available via our user interface, API, SPARQL endpoint and FTP site, including the new PEFF 1.0 format files. Finally, the data on our FTP site is now CC BY 4.0 to promote its reuse.


Assuntos
Bases de Dados de Proteínas , Bases de Conhecimento , Humanos , Internet , Espectrometria de Massas , Peptídeos/química , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , Análise de Sequência de RNA , Software , Tripsina , Interface Usuário-Computador
6.
J Proteome Res ; 20(12): 5227-5240, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34670092

RESUMO

The 2021 Metrics of the HUPO Human Proteome Project (HPP) show that protein expression has now been credibly detected (neXtProt PE1 level) for 18 357 (92.8%) of the 19 778 predicted proteins coded in the human genome, a gain of 483 since 2020 from reports throughout the world reanalyzed by the HPP. Conversely, the number of neXtProt PE2, PE3, and PE4 missing proteins has been reduced by 478 to 1421. This represents remarkable progress on the proteome parts list. The utilization of proteomics in a broad array of biological and clinical studies likewise continues to expand with many important findings and effective integration with other omics platforms. We present highlights from the Immunopeptidomics, Glycoproteomics, Infectious Disease, Cardiovascular, Musculo-Skeletal, Liver, and Cancers B/D-HPP teams and from the Knowledgebase, Mass Spectrometry, Antibody Profiling, and Pathology resource pillars, as well as ethical considerations important to the clinical utilization of proteomics and protein biomarkers.


Assuntos
Benchmarking , Proteoma , Bases de Dados de Proteínas , Humanos , Espectrometria de Massas/métodos , Proteoma/análise , Proteoma/genética , Proteômica/métodos
7.
J Proteome Res ; 19(12): 4782-4794, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33064489

RESUMO

In the context of the Human Proteome Project, we built an inventory of 412 functionally unannotated human proteins for which experimental evidence at the protein level exists (uPE1) and which are highly expressed in tissues involved in human male reproduction. We implemented a strategy combining literature mining, bioinformatics tools to collate annotation and experimental information from specific molecular public resources, and efficient visualization tools to put these unknown proteins into their biological context (protein complexes, tissue and subcellular location, expression pattern). The gathered knowledge allowed pinpointing five uPE1 for which a function has recently been proposed and which should be updated in protein knowledge bases. Furthermore, this bioinformatics strategy allowed to build new functional hypotheses for five other uPE1s in link with phenotypic traits that are specific to male reproductive function such as ciliogenesis/flagellum formation in germ cells (CCDC112 and TEX9), chromatin remodeling (C3orf62) and spermatozoon maturation (CCDC183). We also discussed the enigmatic case of MAGEB proteins, a poorly documented cancer/testis antigen subtype. Tools used and computational outputs produced during this study are freely accessible via ProteoRE (http://www.proteore.org), a Galaxy-based instance, for reuse purposes. We propose these five uPE1s should be investigated in priority by expert laboratories and hope that this inventory and shared resources will stimulate the interest of the community of reproductive biology.


Assuntos
Proteoma , Proteômica , Biologia Computacional , Humanos , Bases de Conhecimento , Masculino , Proteoma/genética , Reprodução
8.
J Proteome Res ; 19(12): 4735-4746, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-32931287

RESUMO

According to the 2020 Metrics of the HUPO Human Proteome Project (HPP), expression has now been detected at the protein level for >90% of the 19 773 predicted proteins coded in the human genome. The HPP annually reports on progress made throughout the world toward credibly identifying and characterizing the complete human protein parts list and promoting proteomics as an integral part of multiomics studies in medicine and the life sciences. NeXtProt release 2020-01 classified 17 874 proteins as PE1, having strong protein-level evidence, up 180 from 17 694 one year earlier. These represent 90.4% of the 19 773 predicted coding genes (all PE1,2,3,4 proteins in neXtProt). Conversely, the number of neXtProt PE2,3,4 proteins, termed the "missing proteins" (MPs), was reduced by 230 from 2129 to 1899 since the neXtProt 2019-01 release. PeptideAtlas is the primary source of uniform reanalysis of raw mass spectrometry data for neXtProt, supplemented this year with extensive data from MassIVE. PeptideAtlas 2020-01 added 362 canonical proteins between 2019 and 2020 and MassIVE contributed 84 more, many of which converted PE1 entries based on non-MS evidence to the MS-based subgroup. The 19 Biology and Disease-driven B/D-HPP teams continue to pursue the identification of driver proteins that underlie disease states, the characterization of regulatory mechanisms controlling the functions of these proteins, their proteoforms, and their interactions, and the progression of transitions from correlation to coexpression to causal networks after system perturbations. And the Human Protein Atlas published Blood, Brain, and Metabolic Atlases.


Assuntos
Proteoma , Proteômica , Bases de Dados de Proteínas , Genoma Humano , Humanos , Espectrometria de Massas , Proteoma/genética
9.
J Proteome Res ; 18(12): 4143-4153, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31517492

RESUMO

Using neXtProt release 2019-01-11, we manually curated a list of 1837 functionally uncharacterized human proteins. Using OrthoList 2, we found that 270 of them have homologues in Caenorhabditis elegans, including 60 with a one-to-one orthology relationship. According to annotations extracted from WormBase, the vast majority of these 60 worm genes have RNAi experimental data or mutant alleles, but manual inspection shows that only 15% have phenotypes that could be interpreted in terms of a specific function. One third of the worm orthologs have protein-protein interaction data, and two of these interactions are conserved in humans. The combination of phenotypic, protein-protein interaction, and gene expression data provides functional hypotheses for 8 uncharacterized human proteins. Experimental validation in human or orthologs is necessary before they can be considered for annotation.


Assuntos
Proteínas de Caenorhabditis elegans , Bases de Dados de Proteínas , Proteínas/metabolismo , Animais , Expressão Gênica , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenótipo , Mapas de Interação de Proteínas , Proteínas/genética , Interferência de RNA , Homologia de Sequência de Aminoácidos
10.
J Proteome Res ; 18(12): 4154-4166, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31581775

RESUMO

In 2018, we reported a hybrid pipeline that predicts protein structures with I-TASSER and function with COFACTOR. I-TASSER/COFACTOR achieved Gene Ontology (GO) high prediction accuracies of Fmax = 0.69 and 0.57 for molecular function (MF) and biological process (BP), respectively, on 100 comprehensively annotated proteins. Now we report blinded analyses of newly annotated proteins in the critical assessment of function annotation (CAFA) three function prediction challenge and in neXtProt. For CAFA3 results released in May 2019, our predictions on 267 and 912 human proteins with newly annotated MF and BP terms achieved Fmax = 0.50 and 0.42, respectively, on "No Knowledge" proteins, and 0.51 and 0.74, respectively, on "Limited Knowledge" proteins. While COFACTOR consistently outperforms simple homology-based analysis, its accuracy still depends on template availability. Meanwhile, in neXtProt 2019-01, 25 proteins acquired new function annotation through literature curation at UniProt/Swiss-Prot. Before the release of these curated results, we submitted to neXtProt blinded predictions of free-text function annotation based on predicted GO terms. For 10 of the 25, a good match of free-text or GO term annotation was obtained. These blind tests represent rigorous assessments of I-TASSER/COFACTOR. neXtProt now provides links to precomputed I-TASSER/COFACTOR predictions for proteins without function annotation to facilitate experimental planning on "dark proteins".


Assuntos
Bases de Dados de Proteínas , Anotação de Sequência Molecular/métodos , Proteínas/química , Proteínas/metabolismo , Biologia Computacional/métodos , Humanos
11.
J Proteome Res ; 18(12): 4108-4116, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31599596

RESUMO

The Human Proteome Organization's (HUPO) Human Proteome Project (HPP) developed Mass Spectrometry (MS) Data Interpretation Guidelines that have been applied since 2016. These guidelines have helped ensure that the emerging draft of the complete human proteome is highly accurate and with low numbers of false-positive protein identifications. Here, we describe an update to these guidelines based on consensus-reaching discussions with the wider HPP community over the past year. The revised 3.0 guidelines address several major and minor identified gaps. We have added guidelines for emerging data independent acquisition (DIA) MS workflows and for use of the new Universal Spectrum Identifier (USI) system being developed by the HUPO Proteomics Standards Initiative (PSI). In addition, we discuss updates to the standard HPP pipeline for collecting MS evidence for all proteins in the HPP, including refinements to minimum evidence. We present a new plan for incorporating MassIVE-KB into the HPP pipeline for the next (HPP 2020) cycle in order to obtain more comprehensive coverage of public MS data sets. The main checklist has been reorganized under headings and subitems, and related guidelines have been grouped. In sum, Version 2.1 of the HPP MS Data Interpretation Guidelines has served well, and this timely update to version 3.0 will aid the HPP as it approaches its goal of collecting and curating MS evidence of translation and expression for all predicted ∼20 000 human proteins encoded by the human genome.


Assuntos
Guias como Assunto , Espectrometria de Massas/métodos , Proteoma , Processamento de Sinais Assistido por Computador , Humanos , Proteômica , Sociedades Científicas
12.
J Proteome Res ; 18(12): 4098-4107, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31430157

RESUMO

The Human Proteome Project (HPP) annually reports on progress made throughout the field in credibly identifying and characterizing the complete human protein parts list and making proteomics an integral part of multiomics studies in medicine and the life sciences. NeXtProt release 2019-01-11 contains 17 694 proteins with strong protein-level evidence (PE1), compliant with HPP Guidelines for Interpretation of MS Data v2.1; these represent 89% of all 19 823 neXtProt predicted coding genes (all PE1,2,3,4 proteins), up from 17 470 one year earlier. Conversely, the number of neXtProt PE2,3,4 proteins, termed the "missing proteins" (MPs), has been reduced from 2949 to 2129 since 2016 through efforts throughout the community, including the chromosome-centric HPP. PeptideAtlas is the source of uniformly reanalyzed raw mass spectrometry data for neXtProt; PeptideAtlas added 495 canonical proteins between 2018 and 2019, especially from studies designed to detect hard-to-identify proteins. Meanwhile, the Human Protein Atlas has released version 18.1 with immunohistochemical evidence of expression of 17 000 proteins and survival plots as part of the Pathology Atlas. Many investigators apply multiplexed SRM-targeted proteomics for quantitation of organ-specific popular proteins in studies of various human diseases. The 19 teams of the Biology and Disease-driven B/D-HPP published a total of 160 publications in 2018, bringing proteomics to a broad array of biomedical research.


Assuntos
Bases de Dados de Proteínas , Proteínas/metabolismo , Proteoma , Cromossomos Humanos , Guias como Assunto , Humanos , Espectrometria de Massas , Proteínas/química , Proteínas/genética , Proteoma/genética
13.
J Proteome Res ; 18(6): 2686-2692, 2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-31081335

RESUMO

Mass-spectrometry-based proteomics enables the high-throughput identification and quantification of proteins, including sequence variants and post-translational modifications (PTMs) in biological samples. However, most workflows require that such variations be included in the search space used to analyze the data, and doing so remains challenging with most analysis tools. In order to facilitate the search for known sequence variants and PTMs, the Proteomics Standards Initiative (PSI) has designed and implemented the PSI extended FASTA format (PEFF). PEFF is based on the very popular FASTA format but adds a uniform mechanism for encoding substantially more metadata about the sequence collection as well as individual entries, including support for encoding known sequence variants, PTMs, and proteoforms. The format is very nearly backward compatible, and as such, existing FASTA parsers will require little or no changes to be able to read PEFF files as FASTA files, although without supporting any of the extra capabilities of PEFF. PEFF is defined by a full specification document, controlled vocabulary terms, a set of example files, software libraries, and a file validator. Popular software and resources are starting to support PEFF, including the sequence search engine Comet and the knowledge bases neXtProt and UniProtKB. Widespread implementation of PEFF is expected to further enable proteogenomics and top-down proteomics applications by providing a standardized mechanism for encoding protein sequences and their known variations. All the related documentation, including the detailed file format specification and example files, are available at http://www.psidev.info/peff .


Assuntos
Proteômica/normas , Humanos , Armazenamento e Recuperação da Informação , Espectrometria de Massas , Software
14.
Nucleic Acids Res ; 45(D1): D177-D182, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-27899619

RESUMO

The neXtProt human protein knowledgebase (https://www.nextprot.org) continues to add new content and tools, with a focus on proteomics and genetic variation data. neXtProt now has proteomics data for over 85% of the human proteins, as well as new tools tailored to the proteomics community.Moreover, the neXtProt release 2016-08-25 includes over 8000 phenotypic observations for over 4000 variations in a number of genes involved in hereditary cancers and channelopathies. These changes are presented in the current neXtProt update. All of the neXtProt data are available via our user interface and FTP site. We also provide an API access and a SPARQL endpoint for more technical applications.


Assuntos
Bases de Dados de Proteínas , Proteômica , Estudos de Associação Genética , Variação Genética , Humanos , Internet , Fenótipo , Proteômica/métodos , Software , Navegador
15.
J Proteome Res ; 17(12): 4160-4170, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30175587

RESUMO

The practice of data sharing in the proteomics field took off and quickly spread in recent years as a result of collective effort. Nowadays, most journal editors mandate the submission of the original raw mass spectra to one of the databases of the ProteomeXchange consortium. With the exception of large institutional initiatives such as PeptideAtlas or the GPMDB, few new studies are however based on the reanalysis of mass spectrometry data. A wealth of information is thus left unexploited in public databases and repositories. Here, we present the large-scale reanalysis of 41 publicly available data sets corresponding to experiments carried out on the HeLa cancer cell line using a custom workflow. In addition to the search of new post-translational modification sites and "missing proteins", our main goal is to identify single amino acid variants and evaluate their impact on protein expression and stability through the spectral counting quantification approach. The X!Tandem software was selected to perform the search of a total of 56 363 701 tandem mass spectra against a customized variant protein database, compiled by the application of the in-house MzVar tool on HeLa-specific somatic and genomic variants retrieved from the COSMIC cell line project. After filtering the resulting identifications with a 1% FDR threshold computed at the protein level, 49 466 unique peptides were identified in 7266 protein entries, allowing the validation of 5576 protein entries in accordance with the HPP guidelines version 2.1. A new "missing protein" was observed (FRAT2, NX_O75474, chromosome 10), and 189 new phosphorylation and 392 new protein N-terminal acetylation sites could be identified. Twenty-four variant peptides were also identified, corresponding to 21 variants in 21 proteins. For three of the nine heterozygous cases where both the variant peptide and its wild-type counterpart were detected, the application of a two-tailed sign test showed a significant difference in the abundance of the two peptide versions.


Assuntos
Bases de Dados de Proteínas , Variação Genética , Processamento de Proteína Pós-Traducional , Proteoma/análise , Acetilação , Sequência de Aminoácidos , Linhagem Celular Tumoral , Células HeLa , Humanos , Fosforilação , Proteômica/métodos , Software
16.
J Proteome Res ; 17(12): 4297-4306, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30230342

RESUMO

Because of the pivotal role of mitochondrial alterations in several diseases, the Human Proteome Organization (HUPO) has promoted in recent years an initiative to characterize the mitochondrial human proteome, the mitochondrial human proteome project (mt-HPP). Here we generated an updated version of the functional mitochondrial human proteome network, made by nodes (mitochondrial proteins) and edges (gold binary interactions), using data retrieved from neXtProt, the reference database for HPP metrics. The principal new concept suggested was the consideration of mitochondria-associated proteins (first interactors), which may influence mitochondrial functions. All of the proteins described as mitochondrial in the sublocation or the GO Cellular Component sections of neXtProt were considered. Their other subcellular and submitochondrial localizations have been analyzed. The network represents the effort to collect all of the high-quality binary interactions described so far for mitochondrial proteins and the possibility for the community to reuse the information collected. As a proof of principle, we mapped proteins with no function, to speculate on their role by the background knowledge of their interactors, and proteins described to be involved in Parkinson's Disease, a neurodegenerative disorder, where it is known that mitochondria play a central role.


Assuntos
Mitocôndrias/química , Mapas de Interação de Proteínas , Proteoma/fisiologia , Humanos , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/fisiologia , Proteômica/métodos
17.
J Proteome Res ; 17(12): 4211-4226, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30191714

RESUMO

20,230 protein-coding genes have been predicted from the analysis of the human genome (neXtProt release 2018-01-17), and about 10% of them are still lacking functional annotation, either predicted by bioinformatics tools or captured from experimental reports. A systematic exploration of the available literature on uncharacterized human genes/proteins led to proposal of functional annotations for 113 proteins and to consolidation of a list of 1,862 uncharacterized human proteins. The advanced search functionality of neXtProt was used extensively in order to examine the landscape of the uncharacterized human proteome in terms of subcellular locations, protein-protein interactions, tissue expression, association with diseases, and 3D structure. Finally, a deep data mining in various publicly available resources allowed building functional hypotheses for 26 uncharacterized human proteins validated at protein level (uPE1). These hypotheses cover the fields of cilia biology, male reproduction, metabolism, nervous system, immunity, inflammation, RNA metabolism, and chromatin biology. They will require experimental validation before they can be considered for annotation. Despite technological progresses, the pace of human protein characterization studies is still slow. It could be accelerated by a better integration of existing knowledge resources and by initiating large collaborative projects involving specialists of different biology fields. We hope that our analysis will contribute to set up the ground for such collaborative approaches and will be exploited by the HUPO Human Proteome Project teams committed to characterize uPE1 proteins.


Assuntos
Anotação de Sequência Molecular , Proteoma/genética , Biologia Computacional , Mineração de Dados , Genoma Humano/genética , Humanos , Métodos , Proteoma/análise
18.
J Proteome Res ; 17(12): 4113-4126, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30124047

RESUMO

Cerebrospinal fluid (CSF) is a body fluid of choice for biomarker studies of brain disorders but remains relatively under-studied compared with other biological fluids such as plasma, partly due to the more invasive means of its sample collection. The present study establishes an in-depth CSF proteome through the analysis of a unique CSF sample from a pool of donors. After immunoaffinity depletion, the CSF sample was fractionated using off-gel electrophoresis and analyzed with liquid chromatography tandem mass spectrometry (MS) using the latest generation of hybrid Orbitrap mass spectrometers. The shotgun proteomic analysis allowed the identification of 20 689 peptides mapping on 3379 proteins. To the best of our knowledge, the obtained data set constitutes the largest CSF proteome published so far. Among the CSF proteins identified, 34% correspond to genes whose transcripts are highly expressed in brain according to the Human Protein Atlas. The principal Alzheimer's disease biomarkers (e.g., tau protein, amyloid-ß, apolipoprotein E, and neurogranin) were detected. Importantly, our data set significantly contributes to the Chromosome-centric Human Proteome Project (C-HPP), and 12 proteins considered as missing are proposed for validation in accordance with the HPP guidelines. Of these 12 proteins, 8 proteins are based on 2 to 6 uniquely mapping peptides from this CSF analysis, and 4 match a new peptide with a "stranded" single peptide in PeptideAtlas from previous CSF studies. The MS proteomic data are available to the ProteomeXchange Consortium ( http://www.proteomexchange.org/ ) with the data set identifier PXD009646.


Assuntos
Proteínas do Líquido Cefalorraquidiano/análise , Líquido Cefalorraquidiano/química , Proteoma/análise , Biomarcadores/líquido cefalorraquidiano , Química Encefálica/genética , Humanos , Proteômica/métodos , Espectrometria de Massas em Tandem
19.
J Proteome Res ; 17(12): 4315-4319, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30106588

RESUMO

The cerebrospinal fluid (CSF) proteome data set presented herein was obtained after immunodepletion of abundant proteins and off-gel electrophoresis fractionation of a commercial pool of normal human CSF; liquid chromatography tandem mass spectrometry analysis was performed with a linear ion trap-Orbitrap Elite. We report the identification of 12 344 peptides mapping on 2281 proteins. In the context of the Chromosome-centric Human Proteome Project (C-HPP), the existence of seven missing proteins is proposed to be validated. This data set is available to the ProteomeXchange Consortium ( http://www.proteomexchange.org/ ) with the data set identifier PXD008029.


Assuntos
Proteínas do Líquido Cefalorraquidiano/análise , Proteoma/análise , Proteínas do Líquido Cefalorraquidiano/isolamento & purificação , Cromatografia Líquida , Mapeamento Cromossômico , Cromossomos Humanos , Humanos , Espectrometria de Massas em Tandem
20.
J Proteome Res ; 17(12): 4031-4041, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30099871

RESUMO

The Human Proteome Project (HPP) annually reports on progress throughout the field in credibly identifying and characterizing the human protein parts list and making proteomics an integral part of multiomics studies in medicine and the life sciences. NeXtProt release 2018-01-17, the baseline for this sixth annual HPP special issue of the Journal of Proteome Research, contains 17 470 PE1 proteins, 89% of all neXtProt predicted PE1-4 proteins, up from 17 008 in release 2017-01-23 and 13 975 in release 2012-02-24. Conversely, the number of neXtProt PE2,3,4 missing proteins has been reduced from 2949 to 2579 to 2186 over the past two years. Of the PE1 proteins, 16 092 are based on mass spectrometry results, and 1378 on other kinds of protein studies, notably protein-protein interaction findings. PeptideAtlas has 15 798 canonical proteins, up 625 over the past year, including 269 from SUMOylation studies. The largest reason for missing proteins is low abundance. Meanwhile, the Human Protein Atlas has released its Cell Atlas, Pathology Atlas, and updated Tissue Atlas, and is applying recommendations from the International Working Group on Antibody Validation. Finally, there is progress using the quantitative multiplex organ-specific popular proteins targeted proteomics approach in various disease categories.


Assuntos
Bases de Dados de Proteínas/tendências , Proteoma/análise , Proteômica/métodos , Guias como Assunto , Humanos , Espectrometria de Massas/métodos , Mapas de Interação de Proteínas , Projetos de Pesquisa , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA