Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(1): 105585, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38141760

RESUMO

Fluorescent protein tags are convenient tools for tracking the aggregation states of amyloidogenic or phase separating proteins, but the effect of the tags is often not well understood. Here, we investigated the impact of a C-terminal red fluorescent protein (RFP) tag on the phase separation of huntingtin exon-1 (Httex1), an N-terminal portion of the huntingtin protein that aggregates in Huntington's disease. We found that the RFP-tagged Httex1 rapidly formed micron-sized, phase separated states in the presence of a crowding agent. The formed structures had a rounded appearance and were highly dynamic according to electron paramagnetic resonance and fluorescence recovery after photobleaching, suggesting that the phase separated state was largely liquid in nature. Remarkably, the untagged protein did not undergo any detectable liquid condensate formation under the same conditions. In addition to strongly promoting liquid-liquid phase separation, the RFP tag also facilitated fibril formation, as the tag-dependent liquid condensates rapidly underwent a liquid-to-solid transition. The rate of fibril formation under these conditions was significantly faster than that of the untagged protein. When expressed in cells, the RFP-tagged Httex1 formed larger aggregates with different antibody staining patterns compared to untagged Httex1. Collectively, these data reveal that the addition of a fluorescent protein tag significantly impacts liquid and solid phase separations of Httex1 in vitro and leads to altered aggregation in cells. Considering that the tagged Httex1 is commonly used to study the mechanisms of Httex1 misfolding and toxicity, our findings highlight the importance to validate the conclusions with untagged protein.


Assuntos
Artefatos , Éxons , Proteína Huntingtina , Doença de Huntington , Medições Luminescentes , Separação de Fases , Agregados Proteicos , Proteína Vermelha Fluorescente , Humanos , Espectroscopia de Ressonância de Spin Eletrônica , Éxons/genética , Fluorescência , Recuperação de Fluorescência Após Fotodegradação , Proteína Huntingtina/química , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Doença de Huntington/metabolismo , Medições Luminescentes/métodos , Proteína Vermelha Fluorescente/genética , Proteína Vermelha Fluorescente/metabolismo , Reprodutibilidade dos Testes
2.
J Biol Chem ; 299(4): 104616, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36931390

RESUMO

Huntington's disease is caused by a polyglutamine (polyQ) expansion in the huntingtin protein. Huntingtin exon 1 (Httex1), as well as other naturally occurring N-terminal huntingtin fragments with expanded polyQ are prone to aggregation, forming potentially cytotoxic oligomers and fibrils. Antibodies and other N-terminal huntingtin binders are widely explored as biomarkers and possible aggregation-inhibiting therapeutics. A monoclonal antibody, MW1, is known to preferentially bind to huntingtin fragments with expanded polyQ lengths, but the molecular basis of the polyQ length specificity remains poorly understood. Using solution NMR, electron paramagnetic resonance, and other biophysical methods, we investigated the structural features of the Httex1-MW1 interaction. Rather than recognizing residual α-helical structure, which is promoted by expanded Q-lengths, MW1 caused the formation of a new, non-native, conformation in which the entire polyQ is largely extended. This non-native polyQ structure allowed the formation of large mixed Httex1-MW1 multimers (600-2900 kD), when Httex1 with pathogenic Q-length (Q46) was used. We propose that these multivalent, entropically favored interactions, are available only to proteins with longer Q-lengths and represent a major factor governing the Q-length preference of MW1. The present study reveals that it is possible to target proteins with longer Q-lengths without having to stabilize a natively favored conformation. Such mechanisms could be exploited in the design of other Q-length specific binders.


Assuntos
Anticorpos Monoclonais , Proteína Huntingtina , Humanos , Anticorpos Monoclonais/metabolismo , Éxons/genética , Proteína Huntingtina/química , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Conformação Proteica em alfa-Hélice/genética , Ligação Proteica , Espectroscopia de Ressonância Magnética , Multimerização Proteica/genética
3.
Int J Mol Sci ; 24(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36834897

RESUMO

The enamel matrix protein Ameloblastin (Ambn) has critical physiological functions, including regulation of mineral formation, cell differentiation, and cell-matrix adhesion. We investigated localized structural changes in Ambn during its interactions with its targets. We performed biophysical assays and used liposomes as a cell membrane model. The xAB2N and AB2 peptides were rationally designed to encompass regions of Ambn that contained self-assembly and helix-containing membrane-binding motifs. Electron paramagnetic resonance (EPR) on spin-labeled peptides showed localized structural gains in the presence of liposomes, amelogenin (Amel), and Ambn. Vesicle clearance and leakage assays indicated that peptide-membrane interactions were independent from peptide self-association. Tryptophan fluorescence and EPR showed competition between Ambn-Amel and Ambn-membrane interactions. We demonstrate localized structural changes in Ambn upon interaction with different targets via a multitargeting domain, spanning residues 57 to 90 of mouse Ambn. Structural changes of Ambn following its interaction with different targets have relevant implications for the multifunctionality of Ambn in enamel formation.


Assuntos
Proteínas do Esmalte Dentário , Lipossomos , Animais , Camundongos , Amelogenina/metabolismo
4.
Neurobiol Dis ; 159: 105517, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34563643

RESUMO

Huntington's disease (HD) is a genetically inherited neurodegenerative disorder caused by expansion of a polyglutamine (polyQ) repeat in the exon-1 of huntingtin protein (HTT). The expanded polyQ enhances the amyloidogenic propensity of HTT exon 1 (HTTex1), which forms a heterogeneous mixture of assemblies with a broad neurotoxicity spectrum. While predominantly intracellular, monomeric and aggregated mutant HTT species are also present in the cerebrospinal fluids of HD patients, however, their biological properties are not well understood. To explore the role of extracellular mutant HTT in aggregation and toxicity, we investigated the uptake and amplification of recombinant HTTex1 assemblies in cell culture models. We find that small HTTex1 fibrils preferentially enter human neurons and trigger the amplification of neurotoxic assemblies; astrocytes or epithelial cells are not permissive. The amplification of HTTex1 in neurons depletes endogenous HTT protein with non-pathogenic polyQ repeat, activates apoptotic caspase-3 pathway and induces nuclear fragmentation. Using a panel of novel monoclonal antibodies and genetic mutation, we identified epitopes within the N-terminal 17 amino acids and proline-rich domain of HTTex1 to be critical in neural uptake and amplification. Synaptosome preparations from the brain homogenates of HD mice also contain mutant HTT species, which enter neurons and behave similar to small recombinant HTTex1 fibrils. These studies suggest that amyloidogenic extracellular mutant HTTex1 assemblies may preferentially enter neurons, propagate and promote neurodegeneration.


Assuntos
Astrócitos/metabolismo , Células Epiteliais/metabolismo , Proteína Huntingtina/metabolismo , Doença de Huntington/metabolismo , Neurônios/metabolismo , Agregação Patológica de Proteínas/metabolismo , Proteínas Amiloidogênicas/genética , Proteínas Amiloidogênicas/metabolismo , Animais , Apoptose , Caspase 3 , Éxons , Técnicas de Introdução de Genes , Humanos , Proteína Huntingtina/genética , Camundongos , Camundongos Transgênicos , Mutação , Peptídeos/genética , Agregação Patológica de Proteínas/genética , Sinaptossomos
5.
Biophys J ; 119(10): 2019-2028, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33096080

RESUMO

Huntington's disease is a heritable neurodegenerative disease that is caused by a CAG expansion in the first exon of the huntingtin gene. This expansion results in an elongated polyglutamine domain that increases the propensity of huntingtin exon-1 to form cross-ß fibrils. Although the polyglutamine domain is important for fibril formation, the dynamic, C-terminal proline-rich domain (PRD) of huntingtin exon-1 makes up a large fraction of the fibril surface. Because potential fibril toxicity has to be mediated by interactions of the fibril surface with its cellular environment, we wanted to model the conformational space adopted by the PRD. We ran 800-ns long molecular dynamics simulations of the PRD using an explicit water model optimized for intrinsically disordered proteins. These simulations accurately predicted our previous solid-state NMR data and newly acquired electron paramagnetic resonance double electron-electron resonance distances, lending confidence in their accuracy. The simulations show that the PRD generally forms an imperfect polyproline (polyP) II helical conformation. The two polyP regions within the PRD stay in a polyP II helix for most of the simulation, whereas occasional kinks in the proline-rich linker region cause an overall bend in the PRD structure. The dihedral angles of the glycine at the end of the second polyP region are very variable, effectively decoupling the highly dynamic 12 C-terminal residues from the rest of the PRD.


Assuntos
Doenças Neurodegenerativas , Amiloide , Éxons , Humanos , Proteína Huntingtina/genética , Modelos Estruturais , Prolina
6.
J Biol Chem ; 294(25): 9799-9812, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31048377

RESUMO

Parkinson's disease (PD) is one of the most common neurodegenerative disorders, and both genetic and histopathological evidence have implicated the ubiquitous presynaptic protein α-synuclein (αSyn) in its pathogenesis. Recent work has investigated how disrupting αSyn's interaction with membranes triggers trafficking defects, cellular stress, and apoptosis. Special interest has been devoted to a series of mutants exacerbating the effects of the E46K mutation (associated with autosomal dominant PD) through homologous Glu-to-Lys substitutions in αSyn's N-terminal region (i.e. E35K and E61K). Such E46K-like mutants have been shown to cause dopaminergic neuron loss and severe but L-DOPA-responsive motor defects in mouse overexpression models, presenting enormous translational potential for PD and other "synucleinopathies." In this work, using a variety of biophysical techniques, we characterize the molecular pathology of E46K-like αSyn mutants by studying their structure and membrane-binding and remodeling abilities. We find that, although a slight increase in the mutants' avidity for synaptic vesicle-like membranes can be detected, most of their deleterious effects are connected to their complete disruption of αSyn's curvature selectivity. Indiscriminate binding can shift αSyn's subcellular localization away from its physiological interactants at the synaptic bouton toward trafficking vesicles and organelles, as observed in E46K-like cellular and murine models, as well as in human pathology. In conclusion, our findings suggest that a loss of curvature selectivity, rather than increased membrane affinity, could be the critical dyshomeostasis in synucleinopathies.


Assuntos
Membrana Celular/patologia , Ácido Glutâmico/química , Lipídeos/análise , Lisina/química , Proteínas Mutantes/metabolismo , Mutação , alfa-Sinucleína/metabolismo , Membrana Celular/metabolismo , Ácido Glutâmico/genética , Humanos , Lipídeos/química , Lisina/genética , Proteínas Mutantes/genética , alfa-Sinucleína/genética
7.
Hum Mol Genet ; 27(13): 2330-2343, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29912367

RESUMO

The N-terminal fragments of mutant huntingtin (mHTT) misfold and assemble into oligomers, which ultimately bundle into insoluble fibrils. Conformations unique to various assemblies of mHTT remain unknown. Knowledge on the half-life of various multimeric structures of mHTT is also scarce. Using a panel of four new antibodies named PHP1-4, we have identified new conformations in monomers and assembled structures of mHTT. PHP1 and PHP2 bind to epitopes within the proline-rich domain (PRD), whereas PHP3 and PHP4 interact with motifs formed at the junction of polyglutamine (polyQ) and polyproline (polyP) repeats of HTT. The PHP1- and PHP2-reactive epitopes are exposed in fibrils of mHTT exon1 (mHTTx1) generated from recombinant proteins and mHTT assemblies, which progressively accumulate in the nuclei, cell bodies and neuropils in the brains of HD mouse models. Notably, electron microscopic examination of brain sections of HD mice revealed that PHP1- and PHP2-reactive mHTT assemblies are present in myelin sheath and in vesicle-like structures. Moreover, PHP1 and PHP2 antibodies block seeding and subsequent fibril assembly of mHTTx1 in vitro and in a cell culture model of HD. PHP3 and PHP4 bind to epitopes in full-length and N-terminal fragments of monomeric mHTT and binding diminishes as the mHTTx1 assembles into fibrils. Interestingly, PHP3 and PHP4 also prevent the aggregation of mHTTx1 in vitro highlighting a regulatory function for the polyQ-polyP motifs. These newly detected conformations may affect fibril assembly, stability and intercellular transport of mHTT.


Assuntos
Proteína Huntingtina , Motivos de Aminoácidos , Animais , Humanos , Proteína Huntingtina/química , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Camundongos , Camundongos Transgênicos , Agregados Proteicos , Domínios Proteicos
8.
Proc Natl Acad Sci U S A ; 114(22): 5629-5634, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28228524

RESUMO

Eps15 (epidermal growth factor receptor pathway substrate 15)-homology domain containing proteins (EHDs) comprise a family of dynamin-related mechano-chemical ATPases involved in cellular membrane trafficking. Previous studies have revealed the structure of the EHD2 dimer, but the molecular mechanisms of membrane recruitment and assembly have remained obscure. Here, we determined the crystal structure of an amino-terminally truncated EHD4 dimer. Compared with the EHD2 structure, the helical domains are 50° rotated relative to the GTPase domain. Using electron paramagnetic spin resonance (EPR), we show that this rotation aligns the two membrane-binding regions in the helical domain toward the lipid bilayer, allowing membrane interaction. A loop rearrangement in GTPase domain creates a new interface for oligomer formation. Our results suggest that the EHD4 structure represents the active EHD conformation, whereas the EHD2 structure is autoinhibited, and reveal a complex series of domain rearrangements accompanying activation. A comparison with other peripheral membrane proteins elucidates common and specific features of this activation mechanism.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Sequência de Aminoácidos/genética , Linhagem Celular Tumoral , Cristalografia por Raios X , Ativação Enzimática/fisiologia , Células HeLa , Humanos , Ligação Proteica , Domínios Proteicos/fisiologia , Multimerização Proteica , Transporte Proteico/fisiologia
9.
J Biol Chem ; 293(51): 19613-19623, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30315108

RESUMO

Expansion of the polyglutamine (polyQ) tract in exon 1 of the huntingtin protein (Httex1) leads to Huntington's disease resulting in fatal neurodegeneration. However, it remains poorly understood how polyQ expansions alter protein structure and cause toxicity. Using CD, EPR, and NMR spectroscopy, we found here that monomeric Httex1 consists of two co-existing structural states whose ratio is determined by polyQ tract length. We observed that short Q-lengths favor a largely random-coil state, whereas long Q-lengths increase the proportion of a predominantly α-helical state. We also note that by following a mobility gradient, Httex1 α-helical conformation is restricted to the N-terminal N17 region and to the N-terminal portion of the adjoining polyQ tract. Structuring in both regions was interdependent and likely stabilized by tertiary contacts. Although little helicity was present in N17 alone, each Gln residue in Httex1 enhanced helix stability by 0.03-0.05 kcal/mol, causing a pronounced preference for the α-helical state at pathological Q-lengths. The Q-length-dependent structuring and rigidification could be mimicked in proteins with shorter Q-lengths by a decrease in temperature, indicating that lower temperatures similarly stabilize N17 and polyQ intramolecular contacts. The more rigid α-helical state of Httex1 with an expanded polyQ tract is expected to alter interactions with cellular proteins and modulate the toxic Httex1 misfolding process. We propose that the polyQ-dependent shift in the structural equilibrium may enable future therapeutic strategies that specifically target Httex1 with toxic Q-lengths.


Assuntos
Éxons , Proteína Huntingtina/química , Proteína Huntingtina/genética , Peptídeos , Dobramento de Proteína , Humanos , Modelos Moleculares , Conformação Proteica em alfa-Hélice , Temperatura
10.
J Biol Chem ; 293(7): 2597-2605, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29282287

RESUMO

Aggregation of huntingtin protein arising from expanded polyglutamine (polyQ) sequences in the exon-1 region of mutant huntingtin plays a central role in the pathogenesis of Huntington's disease. The huntingtin aggregation pathways are of therapeutic and diagnostic interest, but obtaining critical information from the physiologically relevant htt exon-1 (Httex1) protein has been challenging. Using biophysical techniques and an expression and purification protocol that generates clean, monomeric Httex1, we identified and mapped three distinct aggregation pathways: 1) unseeded in solution; 2) seeded in solution; and 3) membrane-mediated. In solution, aggregation proceeded in a highly stepwise manner, in which the individual domains (N terminus containing 17 amino acids (N17), polyQ, and proline-rich domain (PRD)) become ordered at very different rates. The aggregation was initiated by an early oligomer requiring a pathogenic, expanded Gln length and N17 α-helix formation. In the second phase, ß-sheet forms in the polyQ. The slowest step is the final structural maturation of the PRD. This stepwise mechanism could be bypassed by seeding, which potently accelerated aggregation and was a prerequisite for prion-like spreading in vivo Remarkably, membranes could catalyze aggregation even more potently than seeds, in a process that caused significant membrane damage. The N17 governed membrane-mediated aggregation by anchoring Httex1 to the membrane, enhancing local concentration and promoting collision via two-dimensional diffusion. Considering its central roles in solution and in membrane-mediated aggregation, the N17 represents an attractive target for inhibiting multiple pathways. Our approach should help evaluate such inhibitors and identify diagnostic markers for the misfolded forms identified here.


Assuntos
Membrana Celular/metabolismo , Proteína Huntingtina/química , Proteína Huntingtina/metabolismo , Doença de Huntington/metabolismo , Motivos de Aminoácidos , Membrana Celular/química , Membrana Celular/genética , Humanos , Proteína Huntingtina/genética , Doença de Huntington/genética , Cinética , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Agregados Proteicos , Conformação Proteica em alfa-Hélice , Domínios Proteicos
11.
J Am Chem Soc ; 141(36): 14168-14179, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31456396

RESUMO

Mitochondrially derived peptides (MDPs) such as humanin (HN) have shown a remarkable ability to modulate neurological amyloids and apoptosis-associated proteins in cells and animal models. Recently, we found that humanin-like peptides also inhibit amyloid formation outside of neural environments in islet amyloid polypeptide (IAPP) fibrils and plaques, which are hallmarks of Type II diabetes. However, the biochemical basis for regulating amyloids through endogenous MDPs remains elusive. One hypothesis is that MDPs stabilize intermediate amyloid oligomers and discourage the formation of insoluble fibrils. To test this hypothesis, we carried out simulations and experiments to extract the dominant interactions between the S14G-HN mutant (HNG) and a diverse set of IAPP structures. Replica-exchange molecular dynamics suggests that MDPs cap the growth of amyloid oligomers. Simulations also indicate that HNG-IAPP heterodimers are 10 times more stable than IAPP homodimers, which explains the substoichiometric ability of HNG to inhibit amyloid growth. Despite this strong attraction, HNG does not denature IAPP. Instead, HNG binds IAPP near the disordered NFGAIL motif, wedging itself between amyloidogenic fragments. Shielding of NFGAIL-flanking fragments reduces the formation of parallel IAPP ß-sheets and subsequent nucleation of mature amyloid fibrils. From ThT spectroscopy and electron microscopy, we found that HNG does not deconstruct mature IAPP fibrils and oligomers, consistent with the simulations and our proposed hypothesis. Taken together, this work provides new mechanistic insight into how endogenous MDPs regulate pathological amyloid growth at the molecular level and in highly substoichiometric quantities, which can be exploited through peptidomimetics in diabetes or Alzheimer's disease.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Mitocôndrias/química , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Mitocôndrias/metabolismo , Simulação de Dinâmica Molecular
12.
J Biol Chem ; 291(5): 2310-8, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26644467

RESUMO

Parkinson disease and other progressive neurodegenerative conditions are characterized by the intracerebral presence of Lewy bodies, containing amyloid fibrils of α-synuclein. We used cryo-electron microscopy and scanning transmission electron microscopy (STEM) to study in vitro-assembled fibrils. These fibrils are highly polymorphic. Focusing on twisting fibrils with an inter-crossover spacing of 77 nm, our reconstructions showed them to consist of paired protofibrils. STEM mass per length data gave one subunit per 0.47 nm axial rise per protofibril, consistent with a superpleated ß-structure. The STEM images show two thread-like densities running along each of these fibrils, which we interpret as ladders of metal ions. These threads confirmed the two-protofibril architecture of the 77-nm twisting fibrils and allowed us to identify this morphotype in STEM micrographs. Some other, but not all, fibril morphotypes also exhibit dense threads, implying that they also present a putative metal binding site. We propose a molecular model for the protofibril and suggest that polymorphic variant fibrils have different numbers of protofibrils that are associated differently.


Assuntos
Amiloide/química , alfa-Sinucleína/química , Sequência de Aminoácidos , Sítios de Ligação , Microscopia Crioeletrônica , Humanos , Processamento de Imagem Assistida por Computador , Íons , Corpos de Lewy/metabolismo , Microscopia Eletrônica de Transmissão e Varredura , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos
13.
Proc Natl Acad Sci U S A ; 111(19): 6982-7, 2014 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-24778241

RESUMO

Membrane remodeling is controlled by proteins that can promote the formation of highly curved spherical or cylindrical membranes. How a protein induces these different types of membrane curvature and how cells regulate this process is still unclear. Endophilin A1 is a protein involved in generating endocytotic necks and vesicles during synaptic endocytosis and can transform large vesicles into lipid tubes or small and highly curved vesicles in vitro. By using EM and electron paramagnetic resonance of endophilin A1, we find that tubes are formed by a close interaction with endophilin A1's BIN/amphiphysin/Rvs (BAR) domain and deep insertion of its amphipathic helices. In contrast, vesicles are predominantly stabilized by the shallow insertion of the amphipathic helical wedges with the BAR domain removed from the membrane. By showing that the mechanism of membrane curvature induction is different for vesiculation and tubulation, these data also explain why previous studies arrived at different conclusions with respect to the importance of scaffolding and wedging in the membrane curvature generation of BAR proteins. The Parkinson disease-associated kinase LRRK2 phosphorylates S75 of endophilin A1, a position located in the acyl chain region on tubes and the aqueous environment on vesicles. We find that the phosphomimetic mutation S75D favors vesicle formation by inhibiting this conformational switch, acting to regulate endophilin A1-mediated curvature. As endophilin A1 is part of a protein superfamily, we expect these mechanisms and their regulation by posttranslational modifications to be a general means for controlling different types of membrane curvature in a wide range of processes in vivo.


Assuntos
Aciltransferases/química , Aciltransferases/metabolismo , Aciltransferases/genética , Animais , Cristalografia por Raios X , Dimerização , Elétrons , Humanos , Lipídeos/química , Lipossomos/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Fosforilação/fisiologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ratos , Marcadores de Spin , Relação Estrutura-Atividade
14.
J Biol Chem ; 290(43): 25782-93, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26283787

RESUMO

Islet amyloid polypeptide (IAPP) is a 37-amino acid amyloid protein intimately associated with pancreatic islet ß-cell dysfunction and death in type II diabetes. In this study, we combine spectroscopic methods and microscopy to investigate α-helical IAPP-membrane interactions. Using light scattering and fluorescence microscopy, we observe that larger vesicles become smaller upon treatment with human or rat IAPP. Electron microscopy shows the formation of various highly curved structures such as tubules or smaller vesicles in a membrane-remodeling process, and spectrofluorometric detection of vesicle leakage shows disruption of membrane integrity. This effect is stronger for human IAPP than for the less toxic rat IAPP. From CD spectra in the presence of different-sized vesicles, we also uncover the membrane curvature-sensing ability of IAPP and find that it transitions from inducing to sensing membrane curvature when lipid negative charge is decreased. Our in vivo EM images of immunogold-labeled rat IAPP and human IAPP show both forms to localize to mitochondrial cristae, which contain not only locally curved membranes but also phosphatidylethanolamine and cardiolipin, lipids with high spontaneous negative curvature. Disruption of membrane integrity by induction of membrane curvature could apply more broadly to other amyloid proteins and be responsible for membrane damage observed in other amyloid diseases as well.


Assuntos
Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Animais , Membrana Celular/metabolismo , Dicroísmo Circular , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Microscopia de Fluorescência , Ligação Proteica , Ratos
15.
J Biol Chem ; 290(28): 17451-61, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-25995452

RESUMO

Huntington disease, a neurodegenerative disorder characterized by functional deficits and loss of striatal neurons, is linked to an expanded and unstable CAG trinucleotide repeat in the huntingtin gene (HTT). This DNA sequence translates to a polyglutamine repeat in the protein product, leading to mutant huntingtin (mHTT) protein aggregation. The aggregation of mHTT is inhibited in vitro and in vivo by the TCP-1 ring complex (TRiC) chaperonin. Recently, a novel complex comprised of a single type of TRiC subunit has been reported to inhibit mHTT aggregation. Specifically, the purified CCT5 homo-oligomer complex, when compared with TRiC, has a similar structure, ATP use, and substrate refolding activity, and, importantly, it also inhibits mHTT aggregation. Using an aggregation suppression assay and cryoelectron tomography coupled with a novel computational classification method, we uncover the interactions between the synthetic CCT5 complex (∼ 1 MDa) and aggregates of mutant huntingtin exon 1 containing 46 glutamines (mHTTQ46-Ex1). We find that, in a similar fashion to TRiC, synthetic CCT5 complex caps mHTT fibrils at their tips and encapsulates mHTT oligomers, providing a structural description of the inhibition of mHTTQ46-Ex1 by CCT5 complex and a shared mechanism of mHTT inhibition between TRiC chaperonin and the CCT5 complex: cap and contain.


Assuntos
Chaperonina com TCP-1/química , Proteínas Mutantes/química , Proteínas do Tecido Nervoso/química , Chaperonina com TCP-1/genética , Chaperonina com TCP-1/ultraestrutura , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Humanos , Proteína Huntingtina , Doença de Huntington/genética , Doença de Huntington/metabolismo , Modelos Moleculares , Proteínas Mutantes/genética , Proteínas Mutantes/ultraestrutura , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/ultraestrutura , Agregados Proteicos , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/metabolismo , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/ultraestrutura
16.
J Am Chem Soc ; 138(36): 11526-35, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27548572

RESUMO

Water dynamics in the hydration shell of the peripheral membrane protein annexin B12 were studied using MD simulations and Overhauser DNP-enhanced NMR. We show that retardation of water motions near phospholipid bilayers is extended by the presence of a membrane-bound protein, up to around 10 Å above that protein. Near the membrane surface, electrostatic interactions with the lipid head groups strongly slow down water dynamics, whereas protein-induced water retardation is weaker and dominates only at distances beyond 10 Å from the membrane surface. The results can be understood from a simple model based on additive contributions from the membrane and the protein to the activation free energy barriers of water diffusion next to the biomolecular surfaces. Furthermore, analysis of the intermolecular vibrations of the water network reveals that retarded water motions near the membrane shift the vibrational modes to higher frequencies, which we used to identify an entropy gradient from the membrane surface toward the bulk water. Our results have implications for processes that take place at lipid membrane surfaces, including molecular recognition, binding, and protein-protein interactions.


Assuntos
Proteínas de Membrana/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Difusão , Entropia , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Proteínas de Membrana/química , Simulação de Dinâmica Molecular , Propriedades de Superfície , Água/metabolismo
17.
Proc Natl Acad Sci U S A ; 110(42): 16838-43, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24082088

RESUMO

Knowing the topology and location of protein segments at water-membrane interfaces is critical for rationalizing their functions, but their characterization is challenging under physiological conditions. Here, we debut a unique spectroscopic approach by using the hydration dynamics gradient found across the phospholipid bilayer as an intrinsic ruler for determining the topology, immersion depth, and orientation of protein segments in lipid membranes, particularly at water-membrane interfaces. This is achieved through the site-specific quantification of translational diffusion of hydration water using an emerging tool, (1)H Overhauser dynamic nuclear polarization (ODNP)-enhanced NMR relaxometry. ODNP confirms that the membrane-bound region of α-synuclein (αS), an amyloid protein known to insert an amphipathic α-helix into negatively charged phospholipid membranes, forms an extended α-helix parallel to the membrane surface. We extend the current knowledge by showing that residues 90-96 of bound αS, which is a transition segment that links the α-helix and the C terminus, adopt a larger loop than an idealized α-helix. The unstructured C terminus gradually threads through the surface hydration layers of lipid membranes, with the beginning portion residing within 5-15 Å above the phosphate level, and only the very end of C terminus surveying bulk water. Remarkably, the intrinsic hydration dynamics gradient along the bilayer normal extends to 20-30 Å above the phosphate level, as demonstrated with a peripheral membrane protein, annexin B12. ODNP offers the opportunity to reveal previously unresolvable structure and location of protein segments well above the lipid phosphate, whose structure and dynamics critically contribute to the understanding of functional versatility of membrane proteins.


Assuntos
Membranas Artificiais , Simulação de Dinâmica Molecular , Fosfolipídeos/química , alfa-Sinucleína/química , Humanos , Ressonância Magnética Nuclear Biomolecular , Fosfolipídeos/metabolismo , Estrutura Terciária de Proteína , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
18.
Proc Natl Acad Sci U S A ; 110(23): 9463-8, 2013 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-23690606

RESUMO

Arrestins bind ligand-activated, phosphorylated G protein-coupled receptors (GPCRs) and terminate the activation of G proteins. Additionally, nonvisual arrestin/GPCR complex can initiate G protein-independent intracellular signals through their ability to act as scaffolds that bring other signaling molecules to the internalized GPCR. Like nonvisual arrestins, vertebrate visual arrestin (ARR1) terminates G protein signaling from light-activated, phosphorylated GPCR, rhodopsin. Unlike nonvisual arrestins, its role as a transducer of signaling from internalized rhodopsin has not been reported in the vertebrate retina. Formation of signaling complexes with arrestins often requires recruitment of the endocytic adaptor protein, AP-2. We have previously shown that Lys296 → Glu (K296E), which is a naturally occurring rhodopsin mutation in certain humans diagnosed with autosomal dominant retinitis pigmentosa, causes toxicity through forming a stable complex with ARR1. Here we investigated whether recruitment of AP-2 by the K296E/ARR1 complex plays a role in generating the cell death signal in a transgenic mouse model of retinal degeneration. We measured the binding affinity of ARR1 for AP-2 and found that, although the affinity is much lower than that of the other arrestins, the unusually high concentration of ARR1 in rods would favor this interaction. We further demonstrate that p44, a splice variant of ARR1 that binds light-activated, phosphorylated rhodopsin but lacks the AP-2 binding motif, prevents retinal degeneration and rescues visual function in K296E mice. These results reveal a unique role of ARR1 in a G protein-independent signaling cascade in the vertebrate retina.


Assuntos
Complexo 2 de Proteínas Adaptadoras/metabolismo , Arrestinas/metabolismo , Sobrevivência Celular/fisiologia , Células Fotorreceptoras de Vertebrados/fisiologia , Degeneração Retiniana/metabolismo , Transdução de Sinais/fisiologia , Análise de Variância , Animais , Arrestinas/genética , Western Blotting , Espectroscopia de Ressonância de Spin Eletrônica , Eletrorretinografia , Proteínas de Ligação ao GTP/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Mutação de Sentido Incorreto/genética , Células Fotorreceptoras de Vertebrados/metabolismo , Degeneração Retiniana/patologia , Rodopsina/metabolismo , beta-Arrestina 1 , beta-Arrestinas
19.
Biochemistry ; 54(25): 3942-9, 2015 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-26020223

RESUMO

Amyloid-like fibrils formed by huntingtin exon-1 (htt_ex1) are a hallmark of Huntington's disease (HD). The structure of these fibrils is unknown, and determining their structure is an important step toward understanding the misfolding processes that cause HD. In HD, a polyglutamine (polyQ) domain in htt_ex1 is expanded to a degree that it gains the ability to form aggregates comprising the core of the resulting fibrils. Despite the simplicity of this polyQ sequence, the structure of htt_ex1 fibrils has been difficult to determine. This study provides a detailed structural investigation of fibrils formed by htt_ex1 using solid-state nuclear magnetic resonance (NMR) spectroscopy. We show that the polyQ domain of htt_ex1 forms the static amyloid core similar to polyQ model peptides. The Gln residues of this domain exist in two distinct conformations that are found in separate domains or monomers but are relatively close in space. The rest of htt_ex1 is relatively dynamic on an NMR time scale, especially the proline-rich C-terminus, which we found to be in a polyproline II helical and random coil conformation. We observed a similar dynamic C-terminus in a soluble form of htt_ex1, indicating that the conformation of this part of htt_ex1 is not changed upon its aggregation into an amyloid fibril. From these data, we propose a bottlebrush model for the fibrils formed by htt_ex1. In this model, the polyQ domains form the center and the proline-rich domains the bristles of the bottlebrush.


Assuntos
Amiloide/química , Éxons , Proteínas do Tecido Nervoso/química , Amiloide/genética , Amiloide/metabolismo , Humanos , Proteína Huntingtina , Espectroscopia de Ressonância Magnética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Agregados Proteicos , Dobramento de Proteína , Estrutura Terciária de Proteína
20.
Proc Natl Acad Sci U S A ; 109(21): 8145-8, 2012 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-22566632

RESUMO

In the mammalian retina, life-long renewal of light-sensitive photoreceptor outer segments (POS) involves circadian shedding of distal rod POS tips and their subsequent phagocytosis by the adjacent retinal pigment epithelium (RPE) every morning after light onset. Molecular mechanisms that promote or synchronize POS tip shedding have thus far remained unknown. Here we examined plasma membrane asymmetry of living POS by quantifying surface exposure of the membrane phospholipid phosphatidylserine (PS) using antibodies, annexin V, and pSIVA (polarity-sensitive indicator of viability and apoptosis), an annexin-based biosensor with switchable states of fluorescence. We found that isolated POS particles possess externalized PS, whose blockade or removal reduces their binding and engulfment by RPE in culture. Imaging of live photoreceptors in freshly dissected mouse retina detected PS externalization restricted to POS tips with discrete boundaries. In wild-type mice, frequency of rod tips exposing PS and length of tips with exposed PS peak shortly after light onset. In contrast, PS-marked POS tips do not vary in mice lacking the diurnal phagocytic rhythm of the RPE due to loss of either the phagocytosis receptor αvß5 integrin, expressed by the RPE but not by photoreceptors, or its extracellular ligand milk fat globule-EGF factor 8 (MFG-E8). These data identify a molecular distinction, localized PS exposure, that is specific to the surface of rod POS tips. Enhanced PS exposure preceding rod shedding and phagocytosis suggests that surface PS promotes these processes. Moreover, our results demonstrate that the diurnal rhythm of PS demarcation of POS tips is not intrinsic to rod photoreceptors but requires activities of the RPE as well.


Assuntos
Antígenos de Superfície/genética , Ritmo Circadiano/fisiologia , Cadeias beta de Integrinas/genética , Proteínas do Leite/genética , Fosfatidilserinas/metabolismo , Epitélio Pigmentado da Retina/fisiologia , Segmento Externo da Célula Bastonete/fisiologia , Animais , Antígenos de Superfície/metabolismo , Apoptose/fisiologia , Membrana Celular/fisiologia , Células Cultivadas , Cadeias beta de Integrinas/metabolismo , Luz , Camundongos , Camundongos da Linhagem 129 , Camundongos Mutantes , Proteínas do Leite/metabolismo , Fagocitose/fisiologia , Epitélio Pigmentado da Retina/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA