Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Immunol ; 211(5): 804-815, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37436030

RESUMO

Because of the growing numbers of immunocompromised patients, the incidence of life-threatening fungal infections caused by Candida albicans and Aspergillus fumigatus is increasing. We have recently identified enolase 1 (Eno1) from A. fumigatus as an immune evasion protein. Eno1 is a fungal moonlighting protein that mediates adhesion and invasion of human cells and also immune evasion through complement inactivation. We now show that soluble Eno1 has immunostimulatory activity. We observed that Eno1 from both C. albicans and A. fumigatus directly binds to the surface of lymphocytes, preferentially human and mouse B cells. Functionally, Eno1 upregulated CD86 expression on B cells and induced proliferation. Although the receptor for fungal Eno1 on B lymphocytes is still unknown, the comparison of B cells from wild-type and MyD88-deficient mice showed that B cell activation by Eno1 required MyD88 signaling. With respect to infection biology, we noted that mouse B cells stimulated by Eno1 secreted IgM and IgG2b. These Igs bound C. albicans hyphae in vitro, suggesting that Eno1-induced Ab secretion might contribute to protection from invasive fungal disease in vivo. Eno1 also triggered the release of proinflammatory cytokines from monocytes, particularly IL-6, which is a potent activator of B cells. Together, our data shed new light on the role of secreted Eno1 in infections with C. albicans and A. fumigatus. Eno1 secretion by these pathogenic microbes appears to be a double-edged sword by supporting fungal pathogenicity while triggering (antifungal) immunity.


Assuntos
Aspergillus fumigatus , Candida albicans , Fosfopiruvato Hidratase , Animais , Humanos , Camundongos , Aspergillus fumigatus/enzimologia , Aspergillus fumigatus/metabolismo , Candida albicans/enzimologia , Candida albicans/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Monócitos/metabolismo , Monócitos/microbiologia , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Fosfopiruvato Hidratase/metabolismo , Linfócitos B/metabolismo , Linfócitos B/microbiologia
2.
Eur J Immunol ; 53(11): e2250284, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37503840

RESUMO

To obtain a better understanding of the biology behind life-threatening fungal infections caused by Candida albicans, we recently conducted an in silico screening for fungal and host protein interaction partners. We report here that the extracellular domain of human CD4 binds to the moonlighting protein enolase 1 (Eno1) of C. albicans as predicted bioinformatically. By using different anti-CD4 monoclonal antibodies, we determined that C. albicans Eno1 (CaEno1) primarily binds to the extracellular domain 3 of CD4. Functionally, we observed that CaEno1 binding to CD4 activated lymphocyte-specific protein tyrosine kinase (LCK), which was also the case for anti-CD4 monoclonal antibodies tested in parallel. CaEno1 binding to naïve human CD4+ T cells skewed cytokine secretion toward a Th2 profile indicative of poor fungal control. Moreover, CaEno1 inhibited human memory CD4+ T-cell recall responses. Therapeutically, CD4+ T cells transduced with a p41/Crf1-specific T-cell receptor developed for adoptive T-cell therapy were not inhibited by CaEno1 in vitro. Together, the interaction of human CD4+ T cells with CaEno1 modulated host CD4+ T-cell responses in favor of the fungus. Thus, CaEno1 mediates not only immune evasion through its interference with complement regulators but also through the direct modulation of CD4+ T-cell responses.


Assuntos
Candida albicans , Linfócitos T , Humanos , Linfócitos T/metabolismo , Linfócitos T CD4-Positivos , Fosfopiruvato Hidratase/metabolismo , Anticorpos Monoclonais/metabolismo
3.
Eur J Immunol ; 51(3): 738-741, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33098656

RESUMO

Like human Th1 cells, mouse Th1 cells also secrete IFN-γ upon stimulation with a superagonistic anti-CD28 monoclonal antibody (CD28-SA). Crosslinking of the CD28-SA via FcR and CD40-CD40L interactions greatly increased IFN-γ release. Our data stress the utility of the mouse as a model organism for immune responses in humans.


Assuntos
Antígenos CD28/imunologia , Interferon gama/imunologia , Células Th1/imunologia , Animais , Anticorpos Monoclonais/imunologia , Antígenos CD40/imunologia , Ligante de CD40/imunologia , Humanos , Ativação Linfocitária/imunologia , Camundongos , Transdução de Sinais/imunologia
4.
Eur J Immunol ; 48(2): 366-379, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29023682

RESUMO

The identification of regulatory T cells (Treg cells) in human peripheral blood is an important tool in diagnosis, research, and therapeutic intervention. As compared to lymphoid tissues, the frequencies of circulating Treg cells identified as CD4+ CD25+ Foxp3+ are, however, low. We here show that many of these cells remain undetected due to transient down regulation of Foxp3, which rapidly decays in the absence of cytokine-mediated STAT5 signals. Short-term incubation of PBMCs or isolated CD4+ T cells, but not of lymph node cells, with IL-2, -7, or -15 more than doubles the frequency of Foxp3+ CD25+ among CD4+ T cells detectable by flow cytometry. This increase is not due to cell division but to upregulation of both proteins. At the same time, the uncovered Treg cells up-regulate CD25 and down-regulate CD127, making them accessible to viable cell sorting. "Latent" Treg cells have a demethylated FOXP3 TSDR sequence, are enriched in naïve, non-cycling cells, and are functional. The confirmation of our findings in RA and SLE patients shows the feasibility of uncovering latent Treg cells for immune monitoring in clinical settings. Finally, our results suggest that unmasking of latent Treg cells contributes to the increase in circulating CD4+ CD25+ Foxp3+ cells reported in IL-2 treated patients.


Assuntos
Artrite Reumatoide/imunologia , Linfócitos T CD4-Positivos/imunologia , Imunoterapia/métodos , Lúpus Eritematoso Sistêmico/imunologia , Linfócitos T Reguladores/imunologia , Artrite Reumatoide/terapia , Circulação Sanguínea , Células Cultivadas , Regulação para Baixo , Citometria de Fluxo , Fatores de Transcrição Forkhead/metabolismo , Humanos , Interleucina-15/metabolismo , Interleucina-2/metabolismo , Interleucina-2/uso terapêutico , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Interleucina-7/metabolismo , Subunidade alfa de Receptor de Interleucina-7/metabolismo , Lúpus Eritematoso Sistêmico/terapia , Ativação Linfocitária , Masculino , Metilação , Monitorização Fisiológica
5.
Eur J Immunol ; 46(7): 1644-55, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27122236

RESUMO

The role of CD28-mediated costimulation in secondary CD8(+) T-cell responses remains controversial. Here, we have used two tools - blocking mouse anti-mouse CD28-specific antibodies and inducible CD28-deleting mice - to obtain definitive answers in mice infected with ovalbumin-secreting Listeria monocytogenes. We report that both blockade and global deletion of CD28 reveal its requirement for full clonal expansion and effector functions such as degranulation and IFN-γ production during the secondary immune response. In contrast, cell-intrinsic deletion of CD28 in transferred TCR-transgenic CD8(+) T cells before primary infection leads to impaired clonal expansion but an increase in cells able to express effector functions in both primary and secondary responses. We suggest that the proliferation-impaired CD8(+) T cells respond to CD28-dependent help from their environment by enhanced functional differentiation. Finally, we report that cell-intrinsic deletion of CD28 after the peak of the primary response does not affect the establishment, maintenance, or recall of long-term memory. Thus, if given sufficient time, the progeny of primed CD8(+) T cells adapt to the absence of this costimulator.


Assuntos
Antígenos/imunologia , Antígenos CD28/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Memória Imunológica , Ativação Linfocitária/imunologia , Animais , Infecções Bacterianas/genética , Infecções Bacterianas/imunologia , Infecções Bacterianas/metabolismo , Antígenos CD28/antagonistas & inibidores , Antígenos CD28/genética , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Epitopos de Linfócito T/imunologia , Ativação Linfocitária/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos
6.
Eur J Immunol ; 45(12): 3362-74, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26404745

RESUMO

Mice deficient in IL-2 signaling develop severe anemia indicating a defect in erythropoiesis. However, why deficiency in IL-2, an essential growth factor for lymphocytes, or in IL-2 signaling components should result in defective erythropoiesis is unclear. Here, we have analyzed the mechanism of IL-2 signaling deficiency induced anemia in mice and show that IL-2 plays an indispensable role in bone marrow (BM) erythropoiesis via maintenance of regulatory T (Treg) cells. In absence of IL-2 signaling, IFN-γ produced by the activated T cells suppressed klf1 expression, resulting in an early block in erythrocyte differentiation. Anemia, in IL-2 or IL-2 signaling deficient mice always developed prior to the manifestation of other autoimmune complications such as colitis, suggesting that anemia in these mice might be a contributing factor in inducing other pathological complications in later stages. Our study shows, how essential cytokines of lymphoid cells could exert critical influence on the development of erythrocytes and thus expanding our understanding of the complex regulation of hematopoiesis in the BM. Besides, our findings might facilitate the use of IL-2 and anti-IFN-γ as a clinical remedy against anemia that arise in cancer patients following radiotherapy or chemotherapy, a context which simulates the situation of IL-2 deficiency.


Assuntos
Medula Óssea/fisiologia , Interleucina-2/fisiologia , Anemia/prevenção & controle , Animais , Eritropoese , Proteínas de Homeodomínio/fisiologia , Interferon gama/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Interleucina-7/fisiologia , Linfócitos T/fisiologia
7.
mBio ; 13(1): e0356321, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35132877

RESUMO

In response to infections, human immune cells release extracellular vesicles (EVs) that carry a situationally adapted cocktail of proteins and nucleic acids, including microRNAs (miRNAs), to coordinate the immune response. In this study, we identified hsa-miR-21-5p and hsa-miR-24-3p as the most common miRNAs in exosomes released by human monocytes in response to the pathogenic fungus Candida albicans. Functional analysis of miRNAs revealed that hsa-miR-24-3p, but not hsa-miR-21-5p, acted across species and kingdoms, entering C. albicans and inducing fungal cell growth by inhibiting translation of the cyclin-dependent kinase inhibitor Sol1. Packaging of hsa-miR-24-3p into monocyte exosomes required binding of fungal soluble ß-glucan to complement receptor 3 (CR3) and binding of mannan to Toll-like receptor 4 (TLR4), resulting in receptor colocalization. Together, our in vitro and in vivo findings reveal a novel cross-species evasion mechanism by which C. albicans exploits a human miRNA to promote fungal growth and survival in the host. IMPORTANCE Over the last decade, communication between immune cells by extracellular vesicle-associated miRNAs has emerged as an important regulator of the coordinated immune response. Therefore, a thorough understanding of the conversation occurring via miRNAs, especially during infection, may provide novel insights into both the host reaction to the microbe as well as the microbial response. This study provides evidence that the pathogenic fungus C. albicans communicates with human monocytes and induces the release of a human miRNA that promotes fungal growth. This mechanism represents an unexpected cross-species interaction and implies that an inhibition of specific miRNAs offers new possibilities for the treatment of human fungal infections.


Assuntos
Exossomos , MicroRNAs , Humanos , Candida albicans/genética , Monócitos/metabolismo , MicroRNAs/genética , Exossomos/metabolismo
8.
Front Immunol ; 9: 1060, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29868020

RESUMO

Compared to naive T cells, differentiated T cells are thought to be less dependent on CD28 costimulation for full activation. To revisit the role of CD28 costimulation in mouse T cell recall responses, we adoptively transferred in vitro generated OT-II T helper (Th) 1 cells into C57BL/6 mice (Thy1.2+) and then either blocked CD28-ligand interactions with Fab fragments of the anti-CD28 monoclonal antibody (mAb) E18 or deleted CD28 expression using inducible CD28 knock-out OT-II mice as T cell donors. After injection of ovalbumin protein in adjuvant into the recipient mice we observed that systemic interferon (IFN)γ release strongly depended on CD28 costimulation of the Th1 cells, while secondary clonal expansion was not reduced in the absence of CD28 costimulation. For human memory CD4+ T cell responses we also noted that cytokine release was reduced upon inhibition of CD28 costimulation. Together, our data highlight the so far underestimated role of CD28 costimulation for the reactivation of fully differentiated CD4+ T cells.


Assuntos
Antígenos CD28/imunologia , Citocinas/biossíntese , Células Th1/imunologia , Células Th1/metabolismo , Animais , Biomarcadores , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Diferenciação Celular/imunologia , Citocinas/sangue , Fator de Transcrição GATA3/genética , Fator de Transcrição GATA3/metabolismo , Regulação da Expressão Gênica , Humanos , Memória Imunológica , Imunofenotipagem , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Ativação Linfocitária/imunologia , Camundongos , Camundongos Transgênicos , Proteínas com Domínio T/genética
9.
Front Immunol ; 8: 1985, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29441059

RESUMO

In rodents, low doses of CD28-specific superagonistic monoclonal antibodies (CD28 superagonists, CD28SA) selectively activate regulatory T cells (Treg). This observation has recently been extended to humans, suggesting an option for the treatment of autoimmune and inflammatory diseases. However, a mechanistic explanation for this phenomenon is still lacking. Given that CD28SA amplify T cell receptor (TCR) signals, we tested the hypothesis that the weak tonic TCR signals received by conventional CD4+ T cells (Tconv) in the absence of cognate antigen require more CD28 signaling input for full activation than the stronger TCR signals received by self-reactive Treg. We report that in vitro, the response of mouse Treg and Tconv to CD28SA strongly depends on MHC class II expression by antigen-presenting cells. To separate the effect of tonic TCR signals from self-peptide recognition, we compared the response of wild-type Treg and Tconv to low and high CD28SA doses upon transfer into wild-type or H-2M knockout mice, which lack a self-peptide repertoire. We found that the superior response of Treg to low CD28SA doses was lost in the absence of self-peptide presentation. We also tested if potentially pathogenic autoreactive Tconv would benefit from self-recognition-induced sensitivity to CD28SA stimulation by transferring TCR transgenic OVA-specific Tconv into OVA-expressing mice and found that low-dose CD28SA application inhibited, rather than supported, their expansion, presumably due to the massive concomitant activation of Treg. Finally, we report that also in the in vitro response of human peripheral blood mononuclear cells to CD28SA, HLA II blockade interferes with the expansion of Treg by low-dose CD28SA stimulation. These results provide a rational basis for the further development of low-dose CD28SA therapy for the improvement of Treg activity.

10.
PLoS One ; 7(11): e50080, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23226238

RESUMO

The ability of CD4(+)Foxp3(+) regulatory T-cells (Treg) to produce interleukin (IL)-10 is important for the limitation of inflammation at environmental interfaces like colon or lung. Under steady state conditions, however, few Tregs produce IL-10 ex vivo. To investigate the origin and fate of IL-10 producing Tregs we used a superagonistic mouse anti-mouse CD28 mAb (CD28SA) for polyclonal in vivo stimulation of Tregs, which not only led to their numeric expansion but also to a dramatic increase in IL-10 production. IL-10 secreting Tregs strongly upregulated surface receptors associated with suppressive function as compared to non-producing Tregs. Furthermore, polyclonally expanding Tregs shifted their migration receptor pattern after activation from a CCR7(+)CCR5(-) lymph node-seeking to a CCR7(-)CCR5(+) inflammation-seeking phenotype, explaining the preferential recruitment of IL-10 producers to sites of ongoing immune responses. Finally, we observed that IL-10 producing Tregs from CD28SA stimulated mice were more apoptosis-prone in vitro than their IL-10 negative counterparts. These findings support a model where prolonged activation of Tregs results in terminal differentiation towards an IL-10 producing effector phenotype associated with a limited lifespan, implicating built-in termination of immunosuppression.


Assuntos
Anticorpos/farmacologia , Apoptose/efeitos dos fármacos , Antígenos CD28/imunologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Reguladores/imunologia , Animais , Anticorpos/imunologia , Antígenos CD28/agonistas , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Células Clonais , Expressão Gênica/efeitos dos fármacos , Inflamação/imunologia , Inflamação/metabolismo , Interleucina-10/biossíntese , Interleucina-10/imunologia , Linfonodos/citologia , Linfonodos/efeitos dos fármacos , Linfonodos/imunologia , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Receptores CCR5/genética , Receptores CCR5/imunologia , Receptores CCR7/genética , Receptores CCR7/imunologia , Linfócitos T Citotóxicos/citologia , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/efeitos dos fármacos
11.
PLoS One ; 4(2): e4643, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19247496

RESUMO

Superagonistic CD28-specific monoclonal antibodies (CD28SA) are highly effective activators of regulatory T-cells (Treg cells) in rats, but a first-in-man trial of the human CD28SA TGN1412 resulted in an unexpected cytokine release syndrome. Using a novel mouse anti-mouse CD28SA, we re-investigate the relationship between Treg activation and systemic cytokine release. Treg activation by CD28SA was highly efficient but depended on paracrine IL-2 from CD28SA-stimulated conventional T-cells. Systemic cytokine levels were innocuous, but depletion of Treg cells prior to CD28SA stimulation led to systemic release of proinflammatory cytokines, indicating that in rodents, Treg cells effectively suppress the inflammatory response. Since the human volunteers of the TGN1412 study were not protected by this mechanism, we also tested whether corticosteroid prophylaxis would be compatible with CD28SA induced Treg activation. We show that neither the expansion nor the functional activation of Treg cells is affected by high-dose dexamethasone sufficient to control systemic cytokine release. Our findings warn that preclinical testing of activating biologicals in rodents may miss cytokine release syndromes due to the rapid and efficacious response of the rodent Treg compartment, and suggest that polyclonal Treg activation is feasible in the presence of antiphlogistic corticosteroid prophylaxis.


Assuntos
Anticorpos Monoclonais/imunologia , Antígenos CD28/imunologia , Citocinas/biossíntese , Linfócitos T Reguladores/imunologia , Corticosteroides/farmacologia , Animais , Proliferação de Células , Citocinas/fisiologia , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA